+0  
 
+1
198
3
avatar+260 

this is the second answer i got 

16.865987621884, is it correct. i cant afford to keep puttin in wrong answers. If its the answer then i know what im doing now.

Veteran  Mar 19, 2017
Sort: 

3+0 Answers

 #1
avatar+260 
0

here is another answer i got 

156.161259816828

Veteran  Mar 19, 2017
 #2
avatar+79654 
+5

u = < - 2, 8 >

v = < -7, - 9 >

 

cos (theta)   =   u (dot) v / [ ll u ll * ll v ll ]

 

u (dot) v   =   14 - 72  =   -58

 

ll u ll  =   sqrt [ (-2)^2 + (8)^2 ]  =  sqrt (68)

 

ll v ll   =   sqrt [ (-7)^2 + (-9)^2 ]   =  sqrt [ 49 + 81]   =  sqrt (130)

 

cos (theta)   =   -58 / [ sqrt (68) * sqrt (130) ]

 

arcos  [ -58 / [ sqrt (68) * sqrt (130) ] ]   = theta   ≈ 128.0888°

 

Here is a graph that shows this, Veteran :

 

 

 

 

cool cool cool

CPhill  Mar 19, 2017
 #3
avatar+18764 
0

Find the angle between the vectors. State your answer in degrees,

rounded to at least four decimal places.

 

 

\(\vec{u} = \binom{-2}{8} \\ \vec{v} = \binom{-7}{-9} \\\)

\(\begin{array}{|rcll|} \hline \tan(\theta) &=& \frac{|~\vec{u} \times \vec{v}~| } {\vec{u} \cdot \vec{v} } \\ &=& \frac{ \left|~\binom{-2}{8} \times \binom{-7}{-9}~\right| } {\binom{-2}{8} \cdot \binom{-7}{-9} } \\ &=& \frac{ (-2)\cdot (-9) - (8)\cdot (-7) } { (-2)\cdot (-7) + (8)\cdot (-9) } \\ &=& \frac{ 18+56 } { 14-72 } \\ &=& \frac{ 74 } { -58 } \quad & | \quad II.\text{Quadrant} \\ &=& \frac{ 37 } { -29 } \\ \theta &=& \arctan(\frac{ 37 } { -29 }) \\ \theta &=& \arctan(-1.27586206897) \\ \theta &=& -51.9112271190180^{\circ} + 180^{\circ} \quad & | \quad II.\text{Quadrant} \\ \theta &=& 128.088772881^{\circ} \\ \theta &\approx& 128.0888^{\circ} \\ \hline \end{array}\)

 

laugh

heureka  Mar 20, 2017

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details