+0  
 
0
31
1
avatar

Single rational expressions help!! Very confusing 

Guest Nov 4, 2017

Best Answer 

 #1
avatar+5256 
+1

The goal is to get a common denominator and combine the fractions into one single fraction.

 

Notice that  (a - c)  is in the denominator of the first fraction, but not in the second.  So we need to multiply and divide the second fraction by  (a - c) . That is, multiply it by  (a - c)/(a - c)

 

\(\frac{1}{(2a-b)(a-c)}+\frac{1}{(b-c)(b-2a)} \\~\\ =\frac{1}{(2a-b)(a-c)}+\frac{1(a-c)}{(b-c)(b-2a)(a-c)}\)

 

Now we need to multiply the first fraction by  (b - c)/(b - c) .

 

\(=\frac{1(b-c)}{(b-c)(2a-b)(a-c)}+\frac{1(a-c)}{(b-c)(b-2a)(a-c)}\)

 

Now, notice that the term (2a - b)  is  -1 multiplied by  (b - 2a) .

So let's multiply the second fraction by  -1/-1 .

 

\(=\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{(-1)(a-c)}{(b-c)(-1)(b-2a)(a-c)} \\~\\ =\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{-a+c}{(b-c)(-b+2a)(a-c)} \\~\\ =\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{-a+c}{(b-c)(2a-b)(a-c)}\)        And distribute it.

 

Now the denominators are the same and we can add the fractions together.

 

\(=\frac{b-c+-a+c}{(b-c)(2a-b)(a-c)} \\~\\ =\frac{b-a}{(b-c)(2a-b)(a-c)}\)           -c  and  +c  cancel

hectictar  Nov 4, 2017
Sort: 

1+0 Answers

 #1
avatar+5256 
+1
Best Answer

The goal is to get a common denominator and combine the fractions into one single fraction.

 

Notice that  (a - c)  is in the denominator of the first fraction, but not in the second.  So we need to multiply and divide the second fraction by  (a - c) . That is, multiply it by  (a - c)/(a - c)

 

\(\frac{1}{(2a-b)(a-c)}+\frac{1}{(b-c)(b-2a)} \\~\\ =\frac{1}{(2a-b)(a-c)}+\frac{1(a-c)}{(b-c)(b-2a)(a-c)}\)

 

Now we need to multiply the first fraction by  (b - c)/(b - c) .

 

\(=\frac{1(b-c)}{(b-c)(2a-b)(a-c)}+\frac{1(a-c)}{(b-c)(b-2a)(a-c)}\)

 

Now, notice that the term (2a - b)  is  -1 multiplied by  (b - 2a) .

So let's multiply the second fraction by  -1/-1 .

 

\(=\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{(-1)(a-c)}{(b-c)(-1)(b-2a)(a-c)} \\~\\ =\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{-a+c}{(b-c)(-b+2a)(a-c)} \\~\\ =\frac{b-c}{(b-c)(2a-b)(a-c)}+\frac{-a+c}{(b-c)(2a-b)(a-c)}\)        And distribute it.

 

Now the denominators are the same and we can add the fractions together.

 

\(=\frac{b-c+-a+c}{(b-c)(2a-b)(a-c)} \\~\\ =\frac{b-a}{(b-c)(2a-b)(a-c)}\)           -c  and  +c  cancel

hectictar  Nov 4, 2017

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details