+0

# Solve for all values of x in given intervals (in radians)

+1
72
3
+79

Not sure how to do these.. Would be grateful if steps are shown and x values are in radians..

UpTheChels  Nov 23, 2017
Sort:

#1
+79846
+2

8 tan (x)  + 11  = 19     subtract 11 from  both sides

8 tan (x)  =  8      divide both sides by  8

tan ( x)  = 1

And this is true when x  =  pi/4     and   x  = 5pi/4   in  the requested interval

CPhill  Nov 23, 2017
#2
+79846
+2

sec^2 (x)  = 2 tan^2 (x)

Note that   tan^2(x)  + 1  =  sec^2 (x)....so we can write

tan^2(x)  +  1  =  2tan^2(x)      rearrange as

tan^2(x)  = 1   subtract 1 from both sides

tan^2 (x)  - 1  =  0     factor

(tan (x) + 1) ( tan (x)  - 1)  = 0

Set each factor to ) and solve

tan (x)  +  1  =  0                                       tan (x) - 1  = 0

tan (x)  = -1                                               tan (x)  =  1

And this is true at                                     And this is true at

3pi/4  ± n*pi                                             pi/4  ± n*pi

Where n is an integer

CPhill  Nov 23, 2017
edited by CPhill  Nov 23, 2017
edited by CPhill  Nov 23, 2017
#3
+79846
+1

sec^2(x)  + sec^2(x)  - 1  = 3    subtract 1 from both sides

2sec^2(x)  = 2     divide both sides by 2

sec^2(x)   = 1   subtract 1 from both sides

sec^2(x)  - 1  = 0     factor

( sec (x)  - 1)  (sec (x)  + 1 )   = 0

Set  each factor to 0  and solve

sec(x)  - 1  = 0                              sec(x)  +  1  = 0

sec(x)  = 1                                    sec(x)  = -1

And this is true at                        And this is true at

0  ± n*2pi                                       pi ± n*2pi

Where n is an integer

CPhill  Nov 23, 2017
edited by CPhill  Nov 23, 2017

### 8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details