+0  
 
0
50
1
avatar

x+1-2sqrt(x+4)=0

Guest Aug 30, 2017
edited by Guest  Aug 30, 2017

Best Answer 

 #1
avatar+18548 
+3

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

heureka  Aug 30, 2017
Sort: 

1+0 Answers

 #1
avatar+18548 
+3
Best Answer

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

heureka  Aug 30, 2017

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details