+0

0
269
2
+206

Find the area between two concentric circles defined by

x2 + y2 -2x + 4y + 1 = 0

x2 + y2 -2x + 4y - 11 = 0

LunarRoxey  Apr 5, 2017
Sort:

#1
+76870
+3

Let's put these into standard form, first

x^2 + y^2 -2x + 4y + 1 = 0

x^2 - 2x + y^2 + 2x =  -1       complete the square on x and y

x^2 - 2x + 1 + y^2 + 2x + 4  =  -1 + 1 + 4     factor

(x - 1)^2 + ( y + 2)^2  =  4

This is a circle centered at (1, -2) with a radius of 2

x^2 + y^2 -2x + 4y - 11 = 0

x^2 - 2x + y^2+ 4y = 11

x^2 - 2x + 1 + y^2 + 4y + 4  = 11 + 1 + 4

(x - 1)^2  + (y + 2)^2  = 16

This is  a circle with the same center and a radius of 4

The area between the concentric circles =

pi [ 4^2 - 2^2]   = pi [16 - 4 ]  =  12pi units^2  ≈  37.7 units^2

CPhill  Apr 5, 2017
#2
+18610
+3

Find the area between two concentric circles defined by

Let xc the center of the circles in x

Let yc the center of the circles in y

$$x2 + y2 -2x + 4y \underbrace{+1}_{=x_c^2+y_c^2-r_1^2} = 0 \\\\ x2 + y2 -2x + 4y \underbrace{-11}_{=x_c^2+y_c^2-r_2^2} = 0$$

$$\begin{array}{|lrcll|} \hline (1) & 1 &=& x_c^2+y_c^2-r_1^2 \\ (2) & -11 &=& x_c^2+y_c^2-r_2^2 \\ \hline (1)-(2): & 1-(-11) &=& x_c^2+y_c^2-r_1^2-(x_c^2+y_c^2-r_2^2) \\ & 1+11 &=& x_c^2+y_c^2-r_1^2-x_c^2-y_c^2+r_2^2 \\ & 12 &=& -r_1^2 +r_2^2 \\ & \mathbf{r_2^2-r_1^2} & \mathbf{=} & \mathbf{12} \\ \hline \end{array}$$

The area between two concentric circles:

$$\begin{array}{|rcll|} \hline A &=& \pi r_2^2 - \pi r_1^2 \\ &=& \pi \cdot ( r_2^2 - r_1^2) \quad & | \quad r_2^2-r_1^2 = 12 \\ &=& \pi \cdot 12 \\ &=& 37.6991118431 \\ \hline \end{array}$$

heureka  Apr 6, 2017

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details