+0

# Sorry, I posted this on page 1228, but nobody helped me on the second part. Sorry to bother you guys.

0
560
5

Part (a): Find the sumin terms of  and

Part (b): Find all pairs of positive integers  such that  and

Guest Jan 20, 2015

#3
+18827
+5

Part (a): Find the sum  s =   in terms of  and

$$s = a + (a+1) + ( a+2) + (a+3) + ... +(a+ (n-2)) + (a+(n-1))\\\\ s = \left[a + (a+(n-1))\right] *(\frac{n}{2} ) \\\\ s = \left[2a+(n-1))\right]*(\frac{n}{2} ) \\\\ \boxed{s = n*a+\frac{n(n-1)}{2}}$$

Part (b): Find all pairs of positive integers  such that  and

$$\small{\text{ 2\le n\le14 \text{ and } a > 0 }}\\ \small{\text{  n= 2\quad a=49.500000  }} \\ \small{\text{  n= 3\quad a=32.333333  }} \\ \small{\text{  n= 4\quad a=23.500000  }} \\ \small{\text{ {n= 5\quad a=18.000000}  }} \\ \small{\text{  n= 6\quad a=14.166667  }} \\ \small{\text{  n= 7\quad a=11.285714  }} \\ \small{\text{  {n= 8\quad a=9.000000 } }} \\ \small{\text{ n= 9\quad a=7.111111  }} \\ \small{\text{ n=10\quad a=5.500000  }} \\ \small{\text{ n=11\quad a=4.090909  }} \\ \small{\text{ n=12\quad a=2.833333  }} \\ \small{\text{ n=13\quad a=1.692308  }} \\ \small{\text{ n=14\quad a=0.642857  }} \\ \small{\text{ The only 2 solutions for (a,n) are  (18,5),\ (9,8) }} \\ \small{\text{  {18}+19+20+21+22 = 100 \quad  and \quad {9}+10+11+12+13+14+15+16 = 100  }}$$

heureka  Jan 20, 2015
Sort:

#2
+91435
+5

http://web2.0calc.com/questions/instructions-on-reposting_1

It is best to follow these instructions when you want to repost :)

Melody  Jan 20, 2015
#3
+18827
+5

Part (a): Find the sum  s =   in terms of  and

$$s = a + (a+1) + ( a+2) + (a+3) + ... +(a+ (n-2)) + (a+(n-1))\\\\ s = \left[a + (a+(n-1))\right] *(\frac{n}{2} ) \\\\ s = \left[2a+(n-1))\right]*(\frac{n}{2} ) \\\\ \boxed{s = n*a+\frac{n(n-1)}{2}}$$

Part (b): Find all pairs of positive integers  such that  and

$$\small{\text{ 2\le n\le14 \text{ and } a > 0 }}\\ \small{\text{  n= 2\quad a=49.500000  }} \\ \small{\text{  n= 3\quad a=32.333333  }} \\ \small{\text{  n= 4\quad a=23.500000  }} \\ \small{\text{ {n= 5\quad a=18.000000}  }} \\ \small{\text{  n= 6\quad a=14.166667  }} \\ \small{\text{  n= 7\quad a=11.285714  }} \\ \small{\text{  {n= 8\quad a=9.000000 } }} \\ \small{\text{ n= 9\quad a=7.111111  }} \\ \small{\text{ n=10\quad a=5.500000  }} \\ \small{\text{ n=11\quad a=4.090909  }} \\ \small{\text{ n=12\quad a=2.833333  }} \\ \small{\text{ n=13\quad a=1.692308  }} \\ \small{\text{ n=14\quad a=0.642857  }} \\ \small{\text{ The only 2 solutions for (a,n) are  (18,5),\ (9,8) }} \\ \small{\text{  {18}+19+20+21+22 = 100 \quad  and \quad {9}+10+11+12+13+14+15+16 = 100  }}$$

heureka  Jan 20, 2015
#4
+91435
+3

Thanks Heureka

My answer is wrong - the error was right near the beginning.

I am sure that Heureka's answer is perfect.

Melody  Jan 20, 2015
#4
0

Heureka, could you please explain how you got $$2\leq n\leq14$$ and $$a>0$$ Where did those numbers come from?

Guest Jan 22, 2016
#5
0

If you plug in n= 15 you get ​a=-1/3  and the question asks for the positive integers a and n

Guest Jan 31, 2017

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details