+0

# Struggling on this

0
202
1
+62

Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15. Meanwhile, D is a point on BC such that AD bisects angle A. Find the area of triangle ADC

bbelt711  Jul 26, 2017
Sort:

#1
+18767
+2

Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15.

Meanwhile, D is a point on BC such that AD bisects angle A.

Find the area of triangle ADC

Let area of triangle $$\text{ADC} = A_\text{ADC}$$

Let area of triangle $$\text{ADB} = A_\text{ADB}$$
Let area of triangle $$\text{ABC} = A$$

Let $$A_\text{ADB} = A - A_\text{ADC}$$

$$\begin{array}{|rcll|} \hline \frac { A_\text{ADB} } { A_\text{ADC} } &=& \frac{ \overline{AD}\cdot 13 \cdot \sin(\frac{A}{2}) \cdot \frac12 } { \overline{AD}\cdot 15 \cdot \sin(\frac{A}{2}) \cdot \frac12 } \\ \frac { A_\text{ADB} } { A_\text{ADC} } &=& \frac{ 13 } { 15 } \quad & | \quad A_\text{ADB} = A - A_\text{ADC} \\ \frac { A - A_\text{ADC} } { A_\text{ADC} } &=& \frac{ 13 } { 15 } \\ \frac { A } { A_\text{ADC} } - 1 &=& \frac{ 13 } { 15 } \\ \frac { A } { A_\text{ADC} } &=& 1+ \frac{ 13 } { 15 } \\ \frac { A } { A_\text{ADC} } &=& \frac{ 28 } { 15 } \\ \frac { A_\text{ADC} } { A } &=& \frac{ 15 } { 28 } \\\\ \mathbf{ A_\text{ADC } } & \mathbf{=} & \mathbf{ \frac{ 15 } { 28 } A } \\ \hline \end{array}$$

Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

where s is the semiperimeter of the triangle; that is,
$$s=\frac{a+b+c}{2}$$.

$$\begin{array}{|rcll|} \hline s &=& \frac{a+b+c}{2} \quad & | \quad a= 14, \ b= 15, \ c= 13 \\ s &=& \frac{15+15+13}{2} \\ s &=& \frac{42}{2} \\ \mathbf{ s }& \mathbf{=} & \mathbf{21} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \quad & | \quad s= 21, \ a= 14, \ b= 15, \ c= 13 \\ A &=& \sqrt{21(21-14)(21-15)(21-13)} \\ A &=& \sqrt{21\cdot 7 \cdot 6 \cdot 8 } \\ A &=& \sqrt{3\cdot 7 \cdot 7 \cdot 2\cdot 3 \cdot 2\cdot 4 } \\ A &=& \sqrt{4^2\cdot 7^2 \cdot 3^2 } \\ A &=& 4\cdot 7 \cdot 3 \\ \mathbf{ A }& \mathbf{=} & \mathbf{84} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline \mathbf{ A_\text{ADC } } & \mathbf{=} & \mathbf{ \frac{ 15 } { 28 } A } \quad & | \quad \mathbf{ A } \mathbf{=} \mathbf{84} \\ A_\text{ADC } & = & \frac{ 15 } { 28 } \cdot 84 \\ A_\text{ADC } & = & 15 \cdot 3 \\\\ \mathbf{ A_\text{ADC } }& \mathbf{=} & \mathbf{45} \\ \hline \end{array}$$

heureka  Jul 27, 2017

### 8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details