+0

# surds

+2
49
2

show that $$\frac{1}{1+\frac{1}{\sqrt{}2}}$$ can be written as $$2-\sqrt{2}$$

Guest Nov 27, 2017

#1
+5565
+3

$$\frac{1}{1+\frac{1}{\sqrt2}}$$

Rewrite the  1  in the denominator as  $$\frac{\sqrt2}{\sqrt2}$$ .

$$\frac{1}{\frac{\sqrt2}{\sqrt2}+\frac{1}{\sqrt2}}$$

Add the fractions in the denominator together.

$$\frac{1}{\frac{\sqrt2+1}{\sqrt2}}$$

That is the same as...

$$1\div\frac{\sqrt2+1}{\sqrt2}$$

Invert the second fraction and multiply.

$$1\,\cdot\,\frac{\sqrt2}{\sqrt2+1}$$

$$\frac{\sqrt2}{\sqrt2+1}$$

Multiply the numerator and denominator by  $$\sqrt2-1$$ .

$$\frac{\sqrt2}{\sqrt2+1}\,\cdot\,\frac{\sqrt2-1}{\sqrt2-1}$$

$$\frac{2-\sqrt2}{2-1}$$

$$\frac{2-\sqrt2}{1}$$

$$2-\sqrt2$$

hectictar  Nov 27, 2017
Sort:

#1
+5565
+3

$$\frac{1}{1+\frac{1}{\sqrt2}}$$

Rewrite the  1  in the denominator as  $$\frac{\sqrt2}{\sqrt2}$$ .

$$\frac{1}{\frac{\sqrt2}{\sqrt2}+\frac{1}{\sqrt2}}$$

Add the fractions in the denominator together.

$$\frac{1}{\frac{\sqrt2+1}{\sqrt2}}$$

That is the same as...

$$1\div\frac{\sqrt2+1}{\sqrt2}$$

Invert the second fraction and multiply.

$$1\,\cdot\,\frac{\sqrt2}{\sqrt2+1}$$

$$\frac{\sqrt2}{\sqrt2+1}$$

Multiply the numerator and denominator by  $$\sqrt2-1$$ .

$$\frac{\sqrt2}{\sqrt2+1}\,\cdot\,\frac{\sqrt2-1}{\sqrt2-1}$$

$$\frac{2-\sqrt2}{2-1}$$

$$\frac{2-\sqrt2}{1}$$

$$2-\sqrt2$$

hectictar  Nov 27, 2017
#2
+2

Great job, hectictar !. Thank you.

Guest Nov 27, 2017
edited by Guest  Nov 27, 2017

### 3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details