+0  
 
0
242
2
avatar

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)
I know the answer but I do not know the solution
answer: 1
help me pls 

Guest Mar 28, 2017
Sort: 

2+0 Answers

 #1
avatar+18777 
+1

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)

 

Formula:

\(\begin{array}{|lcll|} \hline \sin (x) \; \sin (y) = \frac{1}{2}\Big(\cos (x-y) - \cos (x+y)\Big) \\ \cos (x) \; \cos (y) = \frac{1}{2}\Big(\cos (x-y) + \cos (x+y)\Big) \\ \sin (2x) = 2\cdot \sin(x)\cdot \cos(x) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \tan(15^{\circ})\cdot \tan(25^{\circ})\cdot \tan(35^{\circ})\cdot \tan(85^{\circ}) \\ &=& \frac{\sin(15^{\circ})\cdot \sin(25^{\circ})\cdot \sin(35^{\circ})\cdot \sin(85^{\circ})} {\cos(15^{\circ})\cdot \cos(25^{\circ})\cdot \cos(35^{\circ})\cdot \cos(85^{\circ})} \\ &=& \frac{ [\sin(85^{\circ})\cdot\sin(15^{\circ})]\cdot [\sin(35^{\circ})\cdot \sin(25^{\circ})] } { [\cos(85^{\circ})\cdot\cos(15^{\circ})]\cdot [\cos(35^{\circ})\cdot \cos(25^{\circ})] } \\\\ && \sin(85^{\circ})\cdot\sin(15^{\circ}) = \frac{1}{2}\Big(\cos (85^{\circ}-15^{\circ}) - \cos (85^{\circ}+15^{\circ})\Big) \\ && \mathbf{ \sin(85^{\circ})\cdot\sin(15^{\circ}) = \frac{1}{2}\Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) } \\\\ && \sin(35^{\circ})\cdot\sin(25^{\circ}) = \frac{1}{2}\Big(\cos (35^{\circ}-25^{\circ}) - \cos (35^{\circ}+25^{\circ})\Big) \\ && \mathbf{ \sin(35^{\circ})\cdot\sin(25^{\circ}) = \frac{1}{2}\Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } \\\\ && \cos(85^{\circ})\cdot\cos(15^{\circ}) = \frac{1}{2}\Big(\cos (85^{\circ}-15^{\circ}) + \cos (85^{\circ}+15^{\circ})\Big) \\ && \mathbf{ \cos(85^{\circ})\cdot\cos(15^{\circ}) = \frac{1}{2}\Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) } \\\\ && \cos(35^{\circ})\cdot\cos(25^{\circ}) = \frac{1}{2}\Big(\cos (35^{\circ}-25^{\circ}) + \cos (35^{\circ}+25^{\circ})\Big) \\ && \mathbf{ \cos(35^{\circ})\cdot\cos(25^{\circ}) = \frac{1}{2}\Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \\\\ &=& \frac{ \frac{1}{2}\Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) \cdot \frac{1}{2}\Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \frac{1}{2}\Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) \cdot \frac{1}{2}\Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \\\\ &=& \frac{ \Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(100^{\circ}) = \cos(90^{\circ}+10^{\circ})=-\sin(10^{\circ}) \\\\ &=& \frac{ \Big(\cos (70^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\cos (70^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(70^{\circ}) = \cos(90^{\circ}-20^{\circ})=\sin(20^{\circ}) \\\\ &=& \frac{ \Big(\sin(20^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\sin(20^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(60^{\circ}) = \frac{1}{2} \\\\ &=& \frac{ \Big(\sin(20^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \frac{1}{2}\Big) } { \Big(\sin(20^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \frac{1}{2}\Big) } \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2}\cdot \sin(20^{\circ})+\sin(10^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + \frac{1}{2}\cdot \sin(20^{\circ})-\sin(10^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \quad | \quad \sin(10^{\circ})\cdot \cos (10^{\circ}) = \frac{1}{2}\cdot \sin(20^{\circ}) \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2}\cdot \sin(20^{\circ})+\frac{1}{2}\cdot \sin(20^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + \frac{1}{2}\cdot \sin(20^{\circ})-\frac{1}{2}\cdot \sin(20^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \quad | \quad \frac{1}{2}\cdot \sin(20^{\circ})-\frac{1}{2}\cdot \sin(20^{\circ}) = 0 \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) + 0 - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + 0 - \frac{1}{2} \cdot \sin(10^{\circ}) } \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \\\\ &=& 1 \\ \hline \end{array}\)

 

laugh

heureka  Mar 29, 2017
 #2
avatar+91256 
+1

Thanks Heureka :)

I have only just started working through this.

I am sure it is very clear and I will have no problem following it.

However, I would not have been able to put that string of logic together myself.  

Maybe as I work through it some light may come on for me,

I hope so  :))

Melody  Mar 29, 2017

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details