+0

# The center of a circle is located at (−2, 7) . The radius of the circle is 2.

0
229
2
+81

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

What is the equation of the circle in general form?

x2+y2−4x+14y+49=0

x2+y2+4x−14y+51=0

x2+y2+4x−14y+49=0

x2+y2−4x+14y+51=0

jbouyer  May 15, 2017
Sort:

#1
+77035
+2

We have the form

( x - h)^2  + ( y - k)^2  = r^2      where  (h, k) is the center and r is the radius  ....so.....

(x + 2)^2  + (y - 7)^2   = 4           expand

x^2 + 4x + 4 + y^2 - 14y + 49  = 4       subtract 4 from both sides

x^2 + y^2 + 4x - 14y + 49 = 0

CPhill  May 15, 2017
#2
+18625
+1

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

What is the equation of the circle in general form?

A circle can be defined as the locus of all points that satisfy the equation
$$(x-h)^2 + (y-k)^2 = r^2$$  ( Standard Form )
where r is the radius of the circle,
and h,k are the coordinates of its center.

The general Form is:
$$x^2+y^2 +ax+by+c = 0$$

Standard Form to general Form:

$$\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array}$$

a,b and c ?

$$\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ \color{red}a &\color{red}=& \color{red}-2h \\\\ \color{red}b &\color{red}=& \color{red}-2k \\\\ \color{red}c &\color{red}=&\color{red}h^2+k^2-r^2\\ \hline \end{array}$$

If we have h,k and r, we can calculate a,b and c:

$$\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ a = -2h \\ b = -2k \\ c =h^2+k^2-r^2 \\ \hline \end{array}$$

$$h=-2\\ k=7\\ r=2$$

$$\begin{array}{|lcll|} \hline a = -2h \\ a = -2\cdot(-2)\\ \mathbf{a = 4} \\\\ b = -2k \\ b = -2(7) \\ \mathbf{a = -14} \\\\ c =h^2+k^2-r^2 \\ c =(-2)^2+7^2-2^2 \\ c =4+49-4 \\ \mathbf{c =49} \\\\ x^2+y^2 +ax+by+c = 0 \\ \mathbf{x^2+y^2 +4x-14y+49 =0} \\ \hline \end{array}$$

The equation of the circle in general form is: $$x^2+y^2 +4x-14y+49 =0$$

heureka  May 16, 2017

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details