+0

# The first derivative

0
94
2

The first derivative

1-5x

y = -------- =

3x+2

Guest Feb 16, 2017
Sort:

#1
+91229
0

The first derivative

1-5x

y = --------

3x+2

$$\boxed{Quotient Rule\\ y'=\frac{vu'-uv'}{v^2}}\\~\\ y'=\frac{-5(3x+2)-3(1-5x)}{(3x+2)^2}\\ y'=\frac{-15x-10-3+5x}{(3x+2)^2}\\ y'=\frac{-10x-13}{(3x+2)^2}\\$$

Melody  Feb 16, 2017
#2
0

Find the derivative of the following via implicit differentiation:
d/dx(y) = d/dx((1 - 5 x)/(2 + 3 x))
The derivative of y is y'(x):
y'(x) = d/dx((1 - 5 x)/(2 + 3 x))

Use the quotient rule, d/dx(u/v) = (v ( du)/( dx) - u ( dv)/( dx))/v^2, where u = 1 - 5 x and v = 3 x + 2:
y'(x) = ((3 x + 2) d/dx(1 - 5 x) - (1 - 5 x) d/dx(2 + 3 x))/(3 x + 2)^2

Differentiate the sum term by term and factor out constants:
y'(x) = (-((1 - 5 x) (d/dx(2 + 3 x))) + (2 + 3 x) d/dx(1) - 5 d/dx(x))/(2 + 3 x)^2
The derivative of 1 is zero:
y'(x) = (-((1 - 5 x) (d/dx(2 + 3 x))) + (2 + 3 x) (-5 (d/dx(x)) + 0))/(2 + 3 x)^2

Simplify the expression:
y'(x) = (-5 (2 + 3 x) (d/dx(x)) - (1 - 5 x) (d/dx(2 + 3 x)))/(2 + 3 x)^2
The derivative of x is 1:
y'(x) = (-((1 - 5 x) (d/dx(2 + 3 x))) - 1 5 (2 + 3 x))/(2 + 3 x)^2

Differentiate the sum term by term and factor out constants:
y'(x) = (-5 (2 + 3 x) - (1 - 5 x) d/dx(2) + 3 d/dx(x))/(2 + 3 x)^2
The derivative of 2 is zero:
y'(x) = (-5 (2 + 3 x) - (1 - 5 x) (3 (d/dx(x)) + 0))/(2 + 3 x)^2

Simplify the expression:
y'(x) = (-5 (2 + 3 x) - 3 (1 - 5 x) (d/dx(x)))/(2 + 3 x)^2
The derivative of x is 1:
y'(x) = (-5 (2 + 3 x) - 1 3 (1 - 5 x))/(2 + 3 x)^2

Expand the left hand side:
y'(x) = (-3 (1 - 5 x) - 5 (2 + 3 x))/(2 + 3 x)^2
Factor the numerator and denominator of the right hand side:
y'(x) = (-5 (2 + 3 x) + 3 (-1 + 5 x))/(2 + 3 x)^2
Cancel common terms in the numerator and denominator:
Answer: |y'(x) = -13/(2 + 3 x)^2

Guest Feb 16, 2017

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details