+0

# The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

0
401
4

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

Guest May 27, 2015

#2
+18829
+13

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

$$\\ \small{\text{ (1. Line):  \begin{array}{rcl} \\\\\\ 3x + y &=& 1 \\ y &=& \underbrace{-3}_{m_1}x + \underbrace{1}_{b_1} \\ \end{array} }} \\ \small{\text{ (2. Line):  \begin{array}{rcl} \\\\\\ 5x - y &=& 15 \\ y &=& \underbrace{5}_{m_2}x \underbrace{-15}_{b_2} \\ \end{array} }}\\\\ \small{\text{ Intersection:  \begin{array}{lcl} \boxed{ ~x_{\rm{intersection}}=- \dfrac{\Delta b}{ \Delta m} = - \dfrac{b_1-b_2}{m_1-m_2} ~ } \\\\\\ x_{\rm{intersection}}=- \dfrac{1-(-15)}{-3-5} = -\dfrac{16}{-8} = \dfrac{16}{8}= 2\\ y_{\rm{intersection}} = -3x+1 \\ y_{\rm{intersection}} = -3\cdot 2+1\\ y_{\rm{intersection}} = -6+1\\ y_{\rm{intersection}} = -5 \end{array} }}\\\\$$

$$\\\small{\text{ Circle center (x_c,y_c): \begin{array}{lcl} \\\\\\ x_c=x_{\rm{intersection}}=2\\ y_c=y_{\rm{intersection}} = -5 \end{array} }}\\\\ \small{\text{ Circle radius r: \begin{array}{lcl} \\\\ r= x_c=x_{\rm{intersection}}=2\\ \end{array} }}\\\\ \small{\text{ Circle formula:  \begin{array}{lcl} \\\\ (x-x_c)^2+(y-y_c)^2=r^2\\ (x-2)^2+(y+5)^2=2^2=4\\ \end{array} }}$$

heureka  May 28, 2015
Sort:

#1
+81023
+10

3x+y=1 and 5x-y=15

Using the first equation, y = 1 - 3x    ....and substituting this into the second, we have

5x - (1 - 3x) = 15

5x -1 + 3x = 15

8x - 1  = 15

8x = 16

x = 2     and y = (1 - 3x) = (1 - 3(2))  = (1 - 6)  = -5

So the solution point is (2, -5)

And the equation of the circle would be.....

(x - 2)^2 + (y + 5)^2  = 4

Here's a graph.....https://www.desmos.com/calculator/pt2wwhqn4u

CPhill  May 27, 2015
#2
+18829
+13

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

$$\\ \small{\text{ (1. Line):  \begin{array}{rcl} \\\\\\ 3x + y &=& 1 \\ y &=& \underbrace{-3}_{m_1}x + \underbrace{1}_{b_1} \\ \end{array} }} \\ \small{\text{ (2. Line):  \begin{array}{rcl} \\\\\\ 5x - y &=& 15 \\ y &=& \underbrace{5}_{m_2}x \underbrace{-15}_{b_2} \\ \end{array} }}\\\\ \small{\text{ Intersection:  \begin{array}{lcl} \boxed{ ~x_{\rm{intersection}}=- \dfrac{\Delta b}{ \Delta m} = - \dfrac{b_1-b_2}{m_1-m_2} ~ } \\\\\\ x_{\rm{intersection}}=- \dfrac{1-(-15)}{-3-5} = -\dfrac{16}{-8} = \dfrac{16}{8}= 2\\ y_{\rm{intersection}} = -3x+1 \\ y_{\rm{intersection}} = -3\cdot 2+1\\ y_{\rm{intersection}} = -6+1\\ y_{\rm{intersection}} = -5 \end{array} }}\\\\$$

$$\\\small{\text{ Circle center (x_c,y_c): \begin{array}{lcl} \\\\\\ x_c=x_{\rm{intersection}}=2\\ y_c=y_{\rm{intersection}} = -5 \end{array} }}\\\\ \small{\text{ Circle radius r: \begin{array}{lcl} \\\\ r= x_c=x_{\rm{intersection}}=2\\ \end{array} }}\\\\ \small{\text{ Circle formula:  \begin{array}{lcl} \\\\ (x-x_c)^2+(y-y_c)^2=r^2\\ (x-2)^2+(y+5)^2=2^2=4\\ \end{array} }}$$

heureka  May 28, 2015
#3
+4664
0

The Latex is impeccable!

MathsGod1  May 28, 2015
#4
+91462
0

Yes, Heureka is the master of LaTex.  His maths is not half bad either LOL

Thanks Chris and Heureka

Melody  May 28, 2015

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details