+0

# THE NUMBER OF WAYS IN WHICH AN EXAMINER CAN ASSIGN 30 MARKS TO 8 QUESTIONS GIVING NOT LESS THAN 2 MARKS FOR EACH QUESTION IS

0
466
5

THE NUMBER OF WAYS IN WHICH AN EXAMINER CAN ASSIGN 30 MARKS TO 8 QUESTIONS GIVING NOT LESS THAN 2 MARKS FOR EACH QUESTION IS

Guest Apr 8, 2015

#1
+91451
+8

I DON'T KNOW

but

If you put 2 on each question to start with that is 16 points,

the question becomes,

How many ways can you allocate 14 marks to 8 questions.

14,0,0,0,0,0,0,0                              8 ways

13,1,0,0,0,0,0,0                 8!/6! =  56

12,2                                            56

12,1,1                          8!/(5!2!) =168

11,3                                           56

11,2,1                                   $${\frac{{\mathtt{8}}{!}}{{\mathtt{5}}{!}}} = {\mathtt{336}}$$

11,1,1,1,                                $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{4}}{!}{\mathtt{\,\times\,}}{\mathtt{3}}{!}\right)}} = {\mathtt{280}}$$

10,4                                           56

10,3,1                                      336

10,2,2                                        $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{5}}{!}{\mathtt{\,\times\,}}{\mathtt{2}}{!}\right)}} = {\mathtt{168}}$$

10,2,1,1                                   $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{4}}{!}{\mathtt{\,\times\,}}{\mathtt{2}}{!}\right)}} = {\mathtt{840}}$$

10,1,1,1,1,

9,5

9,4,1

9,3,2

9,3,1,1

9,2,1,1,1

9,1,1,1,1,1

8,6

8,5,1

8,4,2,

8,4,1,1,

8,3,3

8,3,2,1

8,3,1,1,1,

8,2,2,2

8,2,2,1,1

8,2,1,1,1,1,

8,1,1,1,1,1,1,

7,7

7,6,1

7,5,2

7,5,1,1

7,4,3,

7,4,2,1

7,4,1,1,1,

7,3,3,1

7,3,2,2

7,3,2,1,1,

7,3,1,1,1,1,

7,2,2,1,1,1,

7,2,1,1,1,1,1,

7,1,1,1,1,1,1,1,

6,5,3

6,5,2,1

6,5,1,1,1

6,4,4,

6,4,3,1

6,4,2,2,

6,4,2,1,1,

6,4,1,1,1,1,

6,3,3,2

6,3,3,1,1

6,3,2,2,1

6,3,2,1,1,1,

6,3,1,1,1,1,1,

6,2,2,2,2

6,2,2,2,1,1

6,2,2,1,1,1,1,

6,2,1,1,1,1,1,1

5,5,4

5,5,3,1

5,5,2,2

5,5,2,1,1,

5,5,1,1,1,1,

5,4,4,1

5,4,3,2

5,4,3,1,1

5,4,2,1,1,1

5,4,1,1,1,1,1

5,3,3,3

5,3,3,2,1

5,3,3,1,1,1,

5,3,2,1,1,1,1

5,3,1,1,1,1,1,1,

5,2,2,2,2,1

5,2,2,2,1,1,1,

5,2,2,1,1,1,1,1,

4,4,4,2

4,4,4,1,1,

4,4,3,3

4,4,3,2,1

4,4,3,1,1,1,

4,4,2,1,1,1,1,

4,4,1,1,1,1,1,1,

4,3,3,3,1

4,3,3,2,2,

4,3,3,2,1,1

4,3,3,1,1,1,1,

4,3,2,2,2,1

4,3,2,2,1,1,1,

4,3,2,1,1,1,1,1,

4,2,2,2,2,2

4,2,2,2,2,1,1

4,2,2,2,1,1,1,1,

3,3,3,3,2

3,3,3,3,1,1

3,3,3,2,2,1

3,3,3,2,1,1,1,

3,3,3,1,1,1,1,1,

3,3,2,2,2,2,

3,3,2,2,2,1,1,

3,3,2,2,1,1,1,1,

3,2,2,2,2,2,1

3,2,2,2,2,1,1,1,

2,2,2,2,2,2,2

2,2,2,2,2,2,1,1

TOTAL=

OBVIOUSLY THERE IS A MUCH SIMPLER WAY BUT MAYBE THIS WOULD WORK TOO :)     LOL

Melody  Apr 8, 2015
Sort:

#1
+91451
+8

I DON'T KNOW

but

If you put 2 on each question to start with that is 16 points,

the question becomes,

How many ways can you allocate 14 marks to 8 questions.

14,0,0,0,0,0,0,0                              8 ways

13,1,0,0,0,0,0,0                 8!/6! =  56

12,2                                            56

12,1,1                          8!/(5!2!) =168

11,3                                           56

11,2,1                                   $${\frac{{\mathtt{8}}{!}}{{\mathtt{5}}{!}}} = {\mathtt{336}}$$

11,1,1,1,                                $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{4}}{!}{\mathtt{\,\times\,}}{\mathtt{3}}{!}\right)}} = {\mathtt{280}}$$

10,4                                           56

10,3,1                                      336

10,2,2                                        $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{5}}{!}{\mathtt{\,\times\,}}{\mathtt{2}}{!}\right)}} = {\mathtt{168}}$$

10,2,1,1                                   $${\frac{{\mathtt{8}}{!}}{\left({\mathtt{4}}{!}{\mathtt{\,\times\,}}{\mathtt{2}}{!}\right)}} = {\mathtt{840}}$$

10,1,1,1,1,

9,5

9,4,1

9,3,2

9,3,1,1

9,2,1,1,1

9,1,1,1,1,1

8,6

8,5,1

8,4,2,

8,4,1,1,

8,3,3

8,3,2,1

8,3,1,1,1,

8,2,2,2

8,2,2,1,1

8,2,1,1,1,1,

8,1,1,1,1,1,1,

7,7

7,6,1

7,5,2

7,5,1,1

7,4,3,

7,4,2,1

7,4,1,1,1,

7,3,3,1

7,3,2,2

7,3,2,1,1,

7,3,1,1,1,1,

7,2,2,1,1,1,

7,2,1,1,1,1,1,

7,1,1,1,1,1,1,1,

6,5,3

6,5,2,1

6,5,1,1,1

6,4,4,

6,4,3,1

6,4,2,2,

6,4,2,1,1,

6,4,1,1,1,1,

6,3,3,2

6,3,3,1,1

6,3,2,2,1

6,3,2,1,1,1,

6,3,1,1,1,1,1,

6,2,2,2,2

6,2,2,2,1,1

6,2,2,1,1,1,1,

6,2,1,1,1,1,1,1

5,5,4

5,5,3,1

5,5,2,2

5,5,2,1,1,

5,5,1,1,1,1,

5,4,4,1

5,4,3,2

5,4,3,1,1

5,4,2,1,1,1

5,4,1,1,1,1,1

5,3,3,3

5,3,3,2,1

5,3,3,1,1,1,

5,3,2,1,1,1,1

5,3,1,1,1,1,1,1,

5,2,2,2,2,1

5,2,2,2,1,1,1,

5,2,2,1,1,1,1,1,

4,4,4,2

4,4,4,1,1,

4,4,3,3

4,4,3,2,1

4,4,3,1,1,1,

4,4,2,1,1,1,1,

4,4,1,1,1,1,1,1,

4,3,3,3,1

4,3,3,2,2,

4,3,3,2,1,1

4,3,3,1,1,1,1,

4,3,2,2,2,1

4,3,2,2,1,1,1,

4,3,2,1,1,1,1,1,

4,2,2,2,2,2

4,2,2,2,2,1,1

4,2,2,2,1,1,1,1,

3,3,3,3,2

3,3,3,3,1,1

3,3,3,2,2,1

3,3,3,2,1,1,1,

3,3,3,1,1,1,1,1,

3,3,2,2,2,2,

3,3,2,2,2,1,1,

3,3,2,2,1,1,1,1,

3,2,2,2,2,2,1

3,2,2,2,2,1,1,1,

2,2,2,2,2,2,2

2,2,2,2,2,2,1,1

TOTAL=

OBVIOUSLY THERE IS A MUCH SIMPLER WAY BUT MAYBE THIS WOULD WORK TOO :)     LOL

Melody  Apr 8, 2015
#3
+91451
+5

I think according to Nauseated, the answer is

http://web2.0calc.com/questions/how-many-ways-are-there-to-distribute-12-unlabeled-b***s-into-9-labeled-boxes

Hey Nauseated, Chris and I are still waiting for you to walk us through the logic behind this formula.  :/

14 unlabelled marks into 8 labelled questions

$$\dbinom{13}{7}=\dfrac{13!}{7!6!}= 1716 \;ways$$

That has a lot more chance of being correct!

Melody  Apr 8, 2015
#4
+91451
+5

I still don't get these.  What have I done wrong ??

If I add up all my possibilities that I have listed and the permutations as well, the number would be way higher!

I have listed all the mark possibilities but not all the permuations of them.

What am I doing wrong ??

Melody  Apr 9, 2015
#5
+5

LET a +b+c+d+e+f+g+h =30 , also a,b,c,d.....>orequal to 2

let p=a-2 , q=b-2 , r=c-2 ........

now , (p+2)+(q+2)+......=30

so , p+q+r+......=14

therefore total number of solutions is (14+8-1)C(8-1) =(21)C(7)

I HOPE YOU UNDERSTOOD

Guest Apr 9, 2015
#6
+91451
0

Thanks anon,

Idk

Does any one else want to weigh in here ?

I know I need to study the answers to the original question.  I still haven't spent as much time considering those answers as I want to.    :/

Melody  Apr 9, 2015

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details