+0  
 
0
136
1
avatar

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3. Find the coordinates of B. 

Guest Jun 29, 2017
Sort: 

1+0 Answers

 #1
avatar+18610 
0

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3.

Find the coordinates of B. 

 

\(\text{Set } \vec{P} = \binom{-3}{-4} \\ \text{Set } \vec{A} = \binom{-6}{-7} \\ \text{Set } \vec{B} =\ ?\)

 

Formula:

\(\begin{array}{|rcll|} \hline \vec{P} = (1-\lambda)\vec{A}+\lambda\vec{B} \\ \hline \end{array}\)

 

Ratio 1:3

\(\begin{array}{|rcll|} \hline \lambda &=& \frac{1}{1+3} \\ &=& \frac14 \\ \hline \end{array}\)

 

Solution for \(\vec{B}\):

\(\begin{array}{|rcll|} \hline \vec{P} &=& (1-\lambda)\vec{A}+\lambda\vec{B} \\ \lambda\vec{B} &=& \vec{P} - (1-\lambda)\vec{A} \\ \vec{B} &=& \frac{1}{\lambda} \cdot \Big( \vec{P} - (1-\lambda)\vec{A} \Big) \quad & | \quad \lambda &=& \frac14 \\ \vec{B} &=& \frac{1}{ \frac14 } \cdot \Big( \vec{P} - (1-\frac14)\vec{A} \Big) \\ \vec{B} &=& 4 \cdot ( \vec{P} - \frac34 \vec{A} ) \\ \vec{B} &=& 4 \vec{P} - 3\vec{A} \\ \vec{B} &=& 4 \binom{-3}{-4} - 3\binom{-6}{-7} \\ \vec{B} &=& 4 \binom{-3}{-4} + 3\binom{6}{7} \\ \vec{B} &=& \binom{-12}{-16} + \binom{18}{21} \\ \vec{B} &=& \binom{-12+18}{-16+21} \\ \mathbf{ \vec{B} } & \mathbf{=} & \mathbf{\dbinom{6}{5}} \\ \hline \end{array}\)

 

Point B(6,5)

 

 

laugh

heureka  Jun 30, 2017

17 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details