+0

# The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3. Find the coordinates of B.

0
136
1

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3. Find the coordinates of B.

Guest Jun 29, 2017
Sort:

#1
+18610
0

The point (-3,-4) divides the line joining point A(-6,-7) and point B in the ratio 1:3.

Find the coordinates of B.

$$\text{Set } \vec{P} = \binom{-3}{-4} \\ \text{Set } \vec{A} = \binom{-6}{-7} \\ \text{Set } \vec{B} =\ ?$$

Formula:

$$\begin{array}{|rcll|} \hline \vec{P} = (1-\lambda)\vec{A}+\lambda\vec{B} \\ \hline \end{array}$$

Ratio 1:3

$$\begin{array}{|rcll|} \hline \lambda &=& \frac{1}{1+3} \\ &=& \frac14 \\ \hline \end{array}$$

Solution for $$\vec{B}$$:

$$\begin{array}{|rcll|} \hline \vec{P} &=& (1-\lambda)\vec{A}+\lambda\vec{B} \\ \lambda\vec{B} &=& \vec{P} - (1-\lambda)\vec{A} \\ \vec{B} &=& \frac{1}{\lambda} \cdot \Big( \vec{P} - (1-\lambda)\vec{A} \Big) \quad & | \quad \lambda &=& \frac14 \\ \vec{B} &=& \frac{1}{ \frac14 } \cdot \Big( \vec{P} - (1-\frac14)\vec{A} \Big) \\ \vec{B} &=& 4 \cdot ( \vec{P} - \frac34 \vec{A} ) \\ \vec{B} &=& 4 \vec{P} - 3\vec{A} \\ \vec{B} &=& 4 \binom{-3}{-4} - 3\binom{-6}{-7} \\ \vec{B} &=& 4 \binom{-3}{-4} + 3\binom{6}{7} \\ \vec{B} &=& \binom{-12}{-16} + \binom{18}{21} \\ \vec{B} &=& \binom{-12+18}{-16+21} \\ \mathbf{ \vec{B} } & \mathbf{=} & \mathbf{\dbinom{6}{5}} \\ \hline \end{array}$$

Point B(6,5)

heureka  Jun 30, 2017

### 17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details