+0

The sequence , , , . . ., has the property that for all . If , then determine

0
272
2

The sequence , . . ., has the property that  for all . If , then determine

Guest Jan 31, 2015

#1
+18827
+10

The sequence , . . ., has the property that  for all .

If , then determine

$$\small{\text{  \begin{array}{rcrcrcr} x_{11}&=& x_{10}+x_{9} &=& (x_9+x_8)+x_9 &=& 2x_9+x_8\\ &=& 2x_9+x_8 &=& 2(x_8+x_7)+x_8 &=& 3x_8+2x_7\\ &=& 3x_8+2x_7 &=& 3(x_7+x_6)+2x_7 &=& 5x_7+3x_6\\ &=& 5x_7+3x_6 &=& 5(x_6+x_5)+3x_6 &=& 8x_6+5x_5\\ &=& 8x_6+5x_5 &=& 8(x_5+x_4)+5x_5 &=& 13x_5+8x_4\\ &=& 13x_5+8x_4 &=& 13(x_4+x_3)+8x_4 &=& 21x_4+13x_3\\ &=& 21x_4+13x_3 &=& 21(x_3+x_2)+13x_3 &=& 34x_3+21x_2\\ &=& 34x_3+21x_2 &=& 34(x_2+x_1)+21x_2 &=& 55x_2+34x_1\\ \end{array}  }}\\ \small{\text{x_{11} = 55x_2+34x_1}}$$

$$\small{\text{ \begin{array}{rcl} 55x_2+34x_1 -x_1 &=& 99 \\ 55x_2 +33x_1&=&99 \quad | \quad :11 \\ \boxed{5x_2+3x_1 = 9} \end{array}  }}$$

$$\small{\text{  \begin{array}{rcrcr} x_3 &=& &=& x_2+x_1 \\ x_4 &=& x_3+x_2 &=& 2x_2+x_1 \\ x_5 &=& x_4+x_3 &=& 3x_2+2x_1 \\ x_6 &=& x_5+x_4 &=& 5x_2+3x_1 \\ \end{array}  }}\\ \small{\text{x_6= 5x_2+3x_1 }}=9$$

heureka  Feb 1, 2015
Sort:

#1
+18827
+10

The sequence , . . ., has the property that  for all .

If , then determine

$$\small{\text{  \begin{array}{rcrcrcr} x_{11}&=& x_{10}+x_{9} &=& (x_9+x_8)+x_9 &=& 2x_9+x_8\\ &=& 2x_9+x_8 &=& 2(x_8+x_7)+x_8 &=& 3x_8+2x_7\\ &=& 3x_8+2x_7 &=& 3(x_7+x_6)+2x_7 &=& 5x_7+3x_6\\ &=& 5x_7+3x_6 &=& 5(x_6+x_5)+3x_6 &=& 8x_6+5x_5\\ &=& 8x_6+5x_5 &=& 8(x_5+x_4)+5x_5 &=& 13x_5+8x_4\\ &=& 13x_5+8x_4 &=& 13(x_4+x_3)+8x_4 &=& 21x_4+13x_3\\ &=& 21x_4+13x_3 &=& 21(x_3+x_2)+13x_3 &=& 34x_3+21x_2\\ &=& 34x_3+21x_2 &=& 34(x_2+x_1)+21x_2 &=& 55x_2+34x_1\\ \end{array}  }}\\ \small{\text{x_{11} = 55x_2+34x_1}}$$

$$\small{\text{ \begin{array}{rcl} 55x_2+34x_1 -x_1 &=& 99 \\ 55x_2 +33x_1&=&99 \quad | \quad :11 \\ \boxed{5x_2+3x_1 = 9} \end{array}  }}$$

$$\small{\text{  \begin{array}{rcrcr} x_3 &=& &=& x_2+x_1 \\ x_4 &=& x_3+x_2 &=& 2x_2+x_1 \\ x_5 &=& x_4+x_3 &=& 3x_2+2x_1 \\ x_6 &=& x_5+x_4 &=& 5x_2+3x_1 \\ \end{array}  }}\\ \small{\text{x_6= 5x_2+3x_1 }}=9$$

heureka  Feb 1, 2015
#2
+80913
+3

Very nice, heureka......the additions on the right hand side are numbers in the Fibonacci series..!!!

CPhill  Feb 1, 2015

34 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details