+0

# The set \$\{2, 4, 6, \dots, n\}\$ contains the positive consecutive even integers from 2 through \$n\$. When one of the integers from the set is

0
162
2
+518

The set \$\{2, 4, 6, \dots, n\}\$ contains the positive consecutive even integers from 2 through \$n\$. When one of the integers from the set is removed, the average of the remaining integers in the set is 28. What is the least possible value of \$n\$ ?

michaelcai  Sep 29, 2017
Sort:

#1
0

Since the set consists of even integers from: 2, 4,  6, 8.........n, and if the average of the set is 28, then 28th term must be=28 x 2 =56=n. The sum of 28 terms from 2+4+ 6+ 8.......56=812. 812/28 =29 average. Therefore: 812 - 56 =756 / 27=28 - the average.

Therefore, the least possible value of n = 56.

Guest Sep 29, 2017
#2
+80968
+1

I get a slightly different answer than the guest does

Notice that  the  greatest possible average from  adding the digits  2 + 4 + 6 + ....+ n

is given by :

[ ( n / 2) (n / 2  + 1 ) - 2 ]  /   [ (n - 2) / 2 ]

Example....   2 , 4 , 6 , 8  10

And the greatest  average possible average is produced when the least number, 2, is omitted

And this average is   [ ( 10 / 2) (10 / 2  + 1 ) - 2 ]  /   [ (10 - 2) / 2 ]  =

[(5)(6) - 2] / (8 / 2 )  =  28 / 4  =  7

So...we want to solve this :

[ ( n / 2) (n / 2  + 1 ) - 2 ]  /   [ (n - 2) / 2 ]  =  28      simplify

2 [ n^2 / 4  +  n/2  - 2 ] =   28 [ n - 2 ]

2 [ ( n^2 + 2n - 8) / 4 ]  =  28 [n - 2]

( n^2 + 2n - 8) / 2  = 28 [n - 2]

( n^2 + 2n - 8) =  56 [n - 2]

n^2 + 2n - 8 =  56n - 112

n^2 - 54n + 104  = 0     factor

( n - 52) ( n - 2)  = 0

And its obvious that  n  = 52  and this is the smallest value of n

Proof :

2  +   4  +   6  +  ....... +  52     can be written as

1   +  2   +  3 +  ........ +  26

+

1   +  2   +  3  + ......... + 26

So  52  is the 26th term

And  the sum of these two series  =  2 (26)(27)/ 2  =  26 * 27

And the average of this series omitting the first term is given by

[Series sum -  2] / [ Number of remaining terms omitting the first one, 2 ]

[ 26 * 27 - 2 ] / 25  =

[ 702 - 2] / 25  =

700 / 25  =

28

CPhill  Sep 30, 2017
edited by CPhill  Sep 30, 2017
edited by CPhill  Sep 30, 2017

### 15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details