+0  
 
0
61
1
avatar+350 

The shaded area of the figure may be found by subtracting the area of the unshaded portion from the total area of the figure. Use this approach to find the area of the shaded region. Use 3.14 as an approximation for

piπ. A circle with a diameter of 38 meters is inscribed inside a square.38 m (a circle within a  square)

 

 

The area of the shaded region is approximately _______

 

m cubed .m3.

m squared .m2.

m.m.

(Simplify your answer. Round to the nearest hundredth as  needed.)

 

ladiikeiii  Nov 30, 2017

Best Answer 

 #1
avatar+5552 
+3

Notice that the side length of the square is  38 m.

 

area of square  =  (side length)2  =  (38 m)2   =   1444 m2

 

Notice that the diameter of the circle is  38 m .

And its radius  =  diameter / 2   =   38m / 2   =   19 m

 

area of circle  =  pi * radius2  =  pi * (19m)2  =  pi * 361 m2   ≈   1133.54 m2

 

So......

 

area of shaded region  =  area of square - area of circle

area of shaded region  ≈       1444 m2     -  1133.54 m2

area of shaded region  ≈    310.46 m2

hectictar  Nov 30, 2017
Sort: 

1+0 Answers

 #1
avatar+5552 
+3
Best Answer

Notice that the side length of the square is  38 m.

 

area of square  =  (side length)2  =  (38 m)2   =   1444 m2

 

Notice that the diameter of the circle is  38 m .

And its radius  =  diameter / 2   =   38m / 2   =   19 m

 

area of circle  =  pi * radius2  =  pi * (19m)2  =  pi * 361 m2   ≈   1133.54 m2

 

So......

 

area of shaded region  =  area of square - area of circle

area of shaded region  ≈       1444 m2     -  1133.54 m2

area of shaded region  ≈    310.46 m2

hectictar  Nov 30, 2017

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details