+0  
 
+1
59
1
avatar+53 

The sum of the two parallel sides of a trapezoid is 22 cm. The segment that connects the midpoints of the two non-parallel sides divides the area of the trapezoid into two parts, in a ratio of 4:7. What is the product of the lengths of the two parallel sides?

 

A) 96

B) 85

C) 72

D) 105

E) 112

jonathanxu999  Dec 19, 2017
Sort: 

1+0 Answers

 #1
avatar+80969 
+1

Let one of the parallel sides   = x......so the other is 22-x

 

And  the length of the  midline  = sum of the parallel sides / 2  =  22/2  = 11

 

Let the area of the smaller part  =  (h/2)(11 + 22 -x)  = (h/2)(33 - x)

 

Let the area of the larger part  = (h/2)(11 + x) 

 

And  (7/4)*area  of the smaller part   = the larger part....so.....

 

(7/4)*(h/2)*(33-x)  = (h/2)*(11+ x)

 

(7/4) (33 - x )   =  (11 + x)

 

7(33 - x)  = 4(11 + x)

 

231  - 7x   =  44 + 4x       add 7x to both sides, subtract 44 from both sides

 

187  =  11x         divide both sides by 11

 

17  = x

 

So.....one parallel base  = 17  and the other is  22-17  = 5

 

And their product  = 17 * 5   =  85

 

 

cool cool cool

CPhill  Dec 20, 2017

22 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details