+0  
 
0
246
1
avatar

This rectangular prism is intersected by a plane that contains points B, D, H, and F.

 

What is the perimeter of the cross section?

 

Round to the nearest tenth.

 

Guest May 7, 2017

Best Answer 

 #1
avatar+4786 
+4

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

hectictar  May 7, 2017
Sort: 

1+0 Answers

 #1
avatar+4786 
+4
Best Answer

perimeter = BD + DH + HF + FB

 

BD = HF      and     DH = FB

so...

perimeter = HF + FB  + HF + FB

perimeter = 2HF + 2FB

 

72 + 82 = HF2   →   HF = \(\sqrt{113}\)     cm

FB = 6     cm

 

perimeter = 2\(\sqrt{113}\) + 2(6)

perimeter = 2\(\sqrt{113}\) + 12

perimeter ≈ 33.3     cm

hectictar  May 7, 2017

16 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details