+0

# triangle

+8
386
6
+519

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

fiora  Jun 24, 2015

#1
+18829
+18

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

We define:  CD = 3,  AB = y,   DB = 2y,   CE = x,   EB =  4x,   BC = 5x,   ED = u,   DA = d

1. Pythagoras:

$$\small{\overline{AB}^2 + \overline{DA}^2 = \overline{DB}^2}\\ \small{y^2+d^2=4y^2\qquad d^2 = 3y^2 \qquad d = \sqrt{3}y }$$

2. Pythagoras:

$$\small{\overline{CA}^2 + \overline{AB}^2 = \overline{BC}^2 \qquad \overline{CA} = 3+\sqrt{3}y}\\\\ \small{ (3+\sqrt{3}y)^2+y^2=(5x)^2\qquad \cdots \qquad \boxed{x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} ~~(1) }}$$

3. cos-rule:

$$\small{u^2 = 3^2 + x^2 - 2\cdot 3\cdot x \cdot \cos{(C)}\qquad \cos{(C)} = \dfrac{ 3 + \sqrt{3}y }{5x} \quad \cdots \quad \boxed{ u = \sqrt{x^2-1.2\sqrt{3}+5.4} ~~(2)}}$$

4. cos-rule:

$$\small{ \begin{array}{lcl} (4x)^2 = u^2+(2y)^2-2u2y\cos{ (120\ensurement{^{\circ}}) } \quad \cos{(120\ensurement{^{\circ}}) } = -\frac{1}{2} \quad \cdots \quad 16x^2=u^2+4y^2+2uy \\ \text{we substitute u, formula (2)}\\ \cdots\\ 15x^2 = -1.2\sqrt{3}y+5.4+4y^2+2y\sqrt{x^2-1.2\sqrt{3}y+5.4}\\ \text{we substitute first x, formula (1)}\\ \cdots\\ \frac{12}{5}y^2+}\frac{18}{5}\sqrt{3}y=4y^2-1.2\sqrt{3}y+2y\sqrt{x^2-1.2\sqrt{3}y+5.4} \qaud | \quad :y \\ \frac{12}{5}y+}\frac{18}{5}\sqrt{3}=4y-1.2\sqrt{3}+2\sqrt{x^2-1.2\sqrt{3}y+5.4} \\ \cdots\\ x^2-1.2\sqrt{3}y+5.4=(2.4\sqrt{3}-0.8y)^2\\ \text{we substitute again x, formula (1)}\\ \cdots\\ 0.16y^2+0.24\sqrt{3}y+0.36-1.2\sqrt{3}y+5.4=17.28-3.84\sqrt{3}y+0.64y^2\\ 0.48y^2-2.88\sqrt{3}y+11.52=0 \quad | :0.48 \quad \\ \boxed{y^2-6\sqrt{3}+24 = 0} \\\\ y_{1,2} = \frac{6\sqrt{3}\pm \2\sqrt{3}}{2}\\ y_1 = 4\sqrt{3} \quad \text{no solution}\\ y_2 = 2\sqrt{3} \quad \text{solution}\\\\ x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} \\\\ x = \dfrac{ \sqrt{ 4 (2\sqrt{3})^2+6\sqrt{3}( 2\sqrt{3})+9 } } {5} \\\\ x = \dfrac{ \sqrt{ 48 +36+9 } } {5} \\\\ x = 1.92873015220\\\\ \mathbf{ \overline{BC} =5x = 9.64365076099 } \end{array} }$$

heureka  Jun 24, 2015
Sort:

#1
+18829
+18

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

We define:  CD = 3,  AB = y,   DB = 2y,   CE = x,   EB =  4x,   BC = 5x,   ED = u,   DA = d

1. Pythagoras:

$$\small{\overline{AB}^2 + \overline{DA}^2 = \overline{DB}^2}\\ \small{y^2+d^2=4y^2\qquad d^2 = 3y^2 \qquad d = \sqrt{3}y }$$

2. Pythagoras:

$$\small{\overline{CA}^2 + \overline{AB}^2 = \overline{BC}^2 \qquad \overline{CA} = 3+\sqrt{3}y}\\\\ \small{ (3+\sqrt{3}y)^2+y^2=(5x)^2\qquad \cdots \qquad \boxed{x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} ~~(1) }}$$

3. cos-rule:

$$\small{u^2 = 3^2 + x^2 - 2\cdot 3\cdot x \cdot \cos{(C)}\qquad \cos{(C)} = \dfrac{ 3 + \sqrt{3}y }{5x} \quad \cdots \quad \boxed{ u = \sqrt{x^2-1.2\sqrt{3}+5.4} ~~(2)}}$$

4. cos-rule:

$$\small{ \begin{array}{lcl} (4x)^2 = u^2+(2y)^2-2u2y\cos{ (120\ensurement{^{\circ}}) } \quad \cos{(120\ensurement{^{\circ}}) } = -\frac{1}{2} \quad \cdots \quad 16x^2=u^2+4y^2+2uy \\ \text{we substitute u, formula (2)}\\ \cdots\\ 15x^2 = -1.2\sqrt{3}y+5.4+4y^2+2y\sqrt{x^2-1.2\sqrt{3}y+5.4}\\ \text{we substitute first x, formula (1)}\\ \cdots\\ \frac{12}{5}y^2+}\frac{18}{5}\sqrt{3}y=4y^2-1.2\sqrt{3}y+2y\sqrt{x^2-1.2\sqrt{3}y+5.4} \qaud | \quad :y \\ \frac{12}{5}y+}\frac{18}{5}\sqrt{3}=4y-1.2\sqrt{3}+2\sqrt{x^2-1.2\sqrt{3}y+5.4} \\ \cdots\\ x^2-1.2\sqrt{3}y+5.4=(2.4\sqrt{3}-0.8y)^2\\ \text{we substitute again x, formula (1)}\\ \cdots\\ 0.16y^2+0.24\sqrt{3}y+0.36-1.2\sqrt{3}y+5.4=17.28-3.84\sqrt{3}y+0.64y^2\\ 0.48y^2-2.88\sqrt{3}y+11.52=0 \quad | :0.48 \quad \\ \boxed{y^2-6\sqrt{3}+24 = 0} \\\\ y_{1,2} = \frac{6\sqrt{3}\pm \2\sqrt{3}}{2}\\ y_1 = 4\sqrt{3} \quad \text{no solution}\\ y_2 = 2\sqrt{3} \quad \text{solution}\\\\ x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} \\\\ x = \dfrac{ \sqrt{ 4 (2\sqrt{3})^2+6\sqrt{3}( 2\sqrt{3})+9 } } {5} \\\\ x = \dfrac{ \sqrt{ 48 +36+9 } } {5} \\\\ x = 1.92873015220\\\\ \mathbf{ \overline{BC} =5x = 9.64365076099 } \end{array} }$$

heureka  Jun 24, 2015
#2
+13

@heureka/  Your calculations are so impressive!!!

Guest Jun 24, 2015
#3
+1068
+10

## @heureka:/

civonamzuk  Jun 24, 2015
#4
+91469
+10

Great work Heureka

Melody  Jun 25, 2015
#5
+519
0

Great job,Heureka!It,s correct.

Does this question challenge you?

fiora  Jun 25, 2015
#6
+18829
+5

Hallo fiora,

yes, this question challange me.

Thank you for this question!

heureka  Jun 25, 2015

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details