+0

# Trigonometry?

+1
37
6
+357

Hello,

I've been struggling a bit with where to start off from here. If someone could guide me that would be great!

Solve \(tan^2sinx -sinx/3\) = 0 on the interval 0 ≤ x ≤ 2π

The way I approached this was try to get rid of the fractions so I multiplied each side by 3. I then found my GCF of sinx and factored it through. It looked like this: sinx(3tan^2x-1)

Am I correct? Any ideas thoughts?

Julius  Dec 5, 2017

#2
+79741
+3

tan^2 (x) * sin (x) - sin (x) / 3  = 0     get a common denominator

[ 3tan^2 (x) * sin (x) - sinx] / 3  = 0     mutiply both sides by 3

3tan^2 (x) * sin (x) - sin (x)  = 0        factor out sin(x)

sin (x)  [  3tan^2 ( x)  - 1]   =  0

We have two equations here.....either.......

sin (x)  = 0       and this happens at   0  and   pi

Or

3tan^2 (x)  -  1   =  0       add 1 to both sides

3tan^2 (x)   =   1           divide both sides by 3

tan^(2) x  =  1/3            take both roots

tan (x)  =  1/√3      and this happens at  pi/6   and 7pi/6

And

tan (x)  =  -  1/√3   and this happens at  5pi/6  and 11pi/6

So.....the solutions are    0, pi/6, 5pi/6, pi, 7pi/6 and 11pi/6

CPhill  Dec 5, 2017
Sort:

#1
0

I think I woud divide through by sin x  to get started.....

Guest Dec 5, 2017
#2
+79741
+3

tan^2 (x) * sin (x) - sin (x) / 3  = 0     get a common denominator

[ 3tan^2 (x) * sin (x) - sinx] / 3  = 0     mutiply both sides by 3

3tan^2 (x) * sin (x) - sin (x)  = 0        factor out sin(x)

sin (x)  [  3tan^2 ( x)  - 1]   =  0

We have two equations here.....either.......

sin (x)  = 0       and this happens at   0  and   pi

Or

3tan^2 (x)  -  1   =  0       add 1 to both sides

3tan^2 (x)   =   1           divide both sides by 3

tan^(2) x  =  1/3            take both roots

tan (x)  =  1/√3      and this happens at  pi/6   and 7pi/6

And

tan (x)  =  -  1/√3   and this happens at  5pi/6  and 11pi/6

So.....the solutions are    0, pi/6, 5pi/6, pi, 7pi/6 and 11pi/6

CPhill  Dec 5, 2017
#3
+357
+1

Ahhh yes!! What was I thinking, that makes sense.

Thanks

Julius  Dec 5, 2017
#4
+357
+1

Oh also you said sin x =0 at 0 and π, but sin x hits zero and 0, π and 2π. Correct?

Julius  Dec 5, 2017
#5
+79741
+1

Yeah, Julius....I forgot about  the second  "≤" ....2pi is also a solution

Thanks for noticing this  !!!

CPhill  Dec 5, 2017
edited by CPhill  Dec 5, 2017
#6
+357
+1

No problem :D

Julius  Dec 5, 2017

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details