+0

# ugh I have no idea any help?

0
70
1
+92

What is the equation of a parabola with  (4, 6) as its focus and y = 2 as its directrix

CrazyDaizy  Jun 2, 2017
Sort:

#1
+75333
+2

Whenever the focus lies above the directrix, the parabola turns "upward"

The  vertex  is

( x coordinate of the focus, [sum of y coordinate of the focus + numerical value of the directrix]/ 2 )  =   ( 4,  [6 + 2] / 2 )  =  ( 4, 8/2)  =  (4, 4)

And we have the following form :

4p ( y - k)  =  (x - h)^2      where   (h, k)  is the vertex  and  "p"  =  y coordinate of the focus - y coordinate of the vertex  =  6 - 4  =   2

So we have

4(2) ( y - 4)  =  ( x - 4)^2

8 (y - 4)  =  ( x - 4)^2

See the graph, here ;

https://www.desmos.com/calculator/o8jsbrmpgz

CPhill  Jun 2, 2017
edited by CPhill  Jun 2, 2017
edited by CPhill  Jun 2, 2017

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details