+0  
 
0
73
6
avatar

How far can we get?

 

Here are the rules:

 

Use four 4's and operators (+,-,*,/,!,^, and square roots, concatenation) to get whole numbers. We can only go in order.

 

\(0={(4-(\sqrt4}*\sqrt4))^{4!}\)

\(1=\frac{44}{44}\)

 

See if you can get 2 and then 3 and then 4 and then 5 and so on...

Guest May 19, 2017
Sort: 

6+0 Answers

 #1
avatar+4174 
+2

I am not very good at these.....but here's ones for 2 and 3 and 4:

 

2 = \(\frac{4*4}{4+4}\)

 

3 =  \(\sqrt{4}+\sqrt4-\frac44\)

 

4 = \(4! - 4*4 - 4\)

 

Also...what do you mean by concatenation?

I looked it up but I still don't really know what it is

 

*edit*

I accidentally put 5 fours for 2...thanks to geno for letting me know!! smiley

hectictar  May 19, 2017
edited by hectictar  May 19, 2017
edited by hectictar  May 19, 2017
 #2
avatar
+1

Good job, hectictar!

 

Concatenation means the action of linking together. For example, 44 is a concatenation, or a link, of a 4 and another 4. Makes sense, no? It's an easier concept to explain than to say the vocab word...

 

Anyway, here comes the next few.

 

\(5=\sqrt4+\sqrt4+\frac{4}{4}\)

\(6=\frac{4!}{4+4}*\sqrt4\)

Guest May 19, 2017
edited by Guest  May 19, 2017
 #3
avatar+4174 
+1

Ah okay..thanks for the explanation!  smiley

 

Here's a 7, 8, and 9...(...These ones seemed a little too easy surprise )

 

\( 7=4+4-\frac44 \\~\\ 8=4+4*\frac44 \\~\\ 9=4+4+\frac44\)

hectictar  May 19, 2017
 #4
avatar+821 
0

\(10=4+4+4-\sqrt4 \)

\(11=\frac{44}{\sqrt4^{\sqrt4}}\)

\(12=\sqrt4(\sqrt4+\sqrt4+\sqrt4)\)

TheXSquaredFactor  May 19, 2017
 #5
avatar+75376 
+1

Here's some more   (without concatenation ) 

 

4! / √4   -  4 / 4   =    24 / 2  -  1   =    12  -  1    =   11

 

4! / √4  + 4/4   =   24/2  + 1   =  12 + 1  =  13

 

4! / √4   + 4 / √4   =   24/2  + 4/2  =  12  + 2  = 14

 

4*4  - 4/4    =  16 - 1   = 15

 

4 + 4 + 4 + 4  = 16

 

4 * 4   +   4/4    =   16 + 1  = 17

 

4 * 4   + 4 / √4  =  16   + 4/2   =   16  + 2    =  18

 

4!  - 4  -  4/4   =   24  - 4 - 1   =   19

 

4!/√4  + 4 + 4   =   24/2 + 4 + 4  =  12 + 4 + 4   = 12 + 8 =  20

 

4! - 4 + 4/4  =   24  - 4  + 1   =  20 + 1  =  21

 

4! -  4 + 4/√4   =  24 - 4 + 4/2  =  24 - 4 + 2   =  20 + 2  = 22

 

4! -  (√4 *√4) / 4   =  24 - (2 *2)/4  =  24 - 4/4  = 24 - 1 = 23

 

4! - 4/√4  + √4  =   24 - 4/2 + 2  =   24  - 2  + 2   =  22 + 2  =  24

 

 

cool cool cool

CPhill  May 19, 2017
 #6
avatar
+1

I guess that I will continue the trend, but my answers aren't too creative...

 

\(26=4!+\sqrt{4}+4-4\)

\(27=4!+\sqrt{4}+\frac{4}{4}\)

\(28=4!+\sqrt{4}+\frac{4}{\sqrt{4}}\)

\(29=4!+4+\frac{4}{4}\)

\(30=4!+4+\frac{4}{\sqrt{4}}\)

Guest May 19, 2017

22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details