+0

# value of n

0
117
1
+10

5^2*5^4*5^6*.......5^2n = (0.008)^-30 find the value of n

kates  Aug 11, 2017
Sort:

#1
+18715
+3

5^2*5^4*5^6*.......5^(2n) = (0.008)^(-30) find the value of n

$$\begin{array}{|rclrcl|} \hline 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 0.008^{(-30)} \\ && 0.008 &=& \frac{8}{1000} \\ && &=& \frac{2^3}{10^3} \\ && &=& \left( \frac{2}{10} \right)^3 \\ && &=& \left( \frac{1}{5} \right)^3 \\ && &=& \frac{1}{5^3} \\ && &=& 5^{-3} \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& (5^{-3})^{-30} \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 5^{(-3)\cdot (-30) } \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 5^{90} \\ 5^{2+4+6 \cdot \ldots \cdot 2n } &=& 5^{90} \\\\ 2+4+6 \cdot \ldots \cdot 2n &=& 90 \\ 2\cdot(1+2+3 + \ldots + n ) &=& 90 \\ && 1+2+3 + \ldots + n &=& \frac{(1+n)\cdot n}{2} \\ 2\cdot \Big(\frac{(1+n)\cdot n}{2} \Big) &=& 90 \\ (1+n)\cdot n &=& 90 \\ n^2+n -90 &=& 0 \\ (n-9)\cdot(n+10) &=& 0 \\ \hline \end{array}$$

$$n = 9 \text{ or } n = -10$$

Because n > 0:

n = 9

$$5^2\cdot 5^4 \cdot 5^6\cdot 5^8\cdot 5^{10}\cdot 5^{12} \cdot 5^{14}\cdot 5^{16}\cdot 5^{18} = 0.008^{(-30)}$$

heureka  Aug 11, 2017

### 8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details