+0  
 
0
43
1
avatar

Vertex formula question help!

Guest Sep 25, 2017
Sort: 

1+0 Answers

 #1
avatar+76850 
+1

For f(x), write y

 

y  = ax^2 + bx + c         subtract c from both sides       

 

y - c  = a  [ x^2  + (b/a)x   ]       

Complete the square on x....take (1/2)  of (b/a)  =  b/[2a]....square it  =  b^2/[4a^2 ]........add to both sides.....don't forget that we're actually adding  ab^2/[4a^2 ]  to the left side

 

y - c + ab^2 / [4a^2]  =  a [ x^2 + (b/a)x  + b^2/(4a^2 )  ]       

Factor the right side........simplify the left

 

 

y - c + b^2 / (4a)  =  a [ x  +  b /(2a) ] ^2 

Add c, subtract b^2 / (4a)  to both sides

 

y  = a [ x  +  b/(2a) ] ^2  - b^2 / (4a) + c

 

y  = a [ x + b / (2a) ]^2   +    (  - b^2  / (4a)  + c  )

 

So.....the vertex   is given by     [ -b / (2a) ,     - b^2  / (4a)  + c  ]

 

Note that we can prove that this is correct.........

 

The x coordinate of the vertex is  -b / (2a)

 

Putting this into   ax^2 + bx + c   for x, we  can find the y coordinate of the vertex thusly :

 

y  = a [b^2 / (4a^2) ] + b [ -b/(2a)] + c

 

y  =  [b^2 / (4a)] - b^2 /(2a)  + c

 

y =  [ b^2  - 2b^2 ] / (4a)  + c

 

y  =  [-b^2 / (4a) ]  + c

 

 

 

cool cool cool

CPhill  Sep 25, 2017
edited by CPhill  Sep 25, 2017

32 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details