+0

# waffles

0
63
2
+112

Right triangle ABC has AB = 3, BC = 4, and AC = 5. Square XYZW is inscribed in triangle ABC with X and Y on overline AC, W on overline AB, and Z on overline BC. What is the side length of the square?

waffles  Jul 28, 2017
Sort:

#1
+18352
+2

Right $$\triangle{ABC}$$ has AB = 3, BC = 4, and AC = 5.
Square XYZW is inscribed in triangle ABC with X and Y on $$\overline{AC}$$,
W on $$\overline{AB}$$, and
Z on $$\overline{BC}$$.
What is the side length of the square?

Let s is the side length oft the square $$= \overline{XY} = \overline{YZ} = \overline{ZW} = \overline{WX}$$

Let h = $$\overline{BT}$$

Let A the area of $$\triangle{ABC}$$

h = ?

$$\begin{array}{|rcll|} \hline A &=& \frac{\overline{AB} \cdot \overline{BC} }{2} \\ A &=& \frac{3\cdot 4}{2} \\ \mathbf{A} &\mathbf{=}& \mathbf{6} \\\\ A &=& \frac{\overline{AC}\cdot h}{2} \\ A &=& \frac{5\cdot h}{2} \quad & | \quad \mathbf{A=6} \\ 6 &=& \frac{5\cdot h}{2} \\ \mathbf{h} &\mathbf{=}& \mathbf{ \frac{12}{5} } \\ \hline \end{array}$$

$$\mathbf{\overline{BW} =\ ?}$$

$$\begin{array}{|rcll|} \hline \frac{ \overline{BW} } {s} &=& \frac{ \overline{AB} } { \overline{AC} } \\ \frac{ \overline{BW} } {s} &=& \frac{ 3 } { 5 } \\ \mathbf{ \overline{BW} } & \mathbf{=} & \mathbf{ \frac{3}{5}s } \\ \hline \end{array}$$

$$\mathbf{\overline{BZ} =\ ?}$$

$$\begin{array}{|rcll|} \hline \frac{ \overline{BZ} } {s} &=& \frac{ \overline{BC} } { \overline{AC} } \\ \frac{ \overline{BZ} } {s} &=& \frac{ 4 } { 5 } \\ \mathbf{\overline{BZ}} &\mathbf{=}& \mathbf{\frac{4}{5}s } \\ \hline \end{array}$$

s = ?

$$\begin{array}{|rcll|} \hline A_{\triangle{ZBW}} = \frac{ \overline{BW}\cdot \overline{BZ} } {2} &=& \frac{s\cdot(h-s)} {2} \\ \overline{BW}\cdot \overline{BZ} &=& s\cdot(h-s) \quad & | \quad \mathbf{ \overline{BW} =\frac{3}{5}s } \quad \mathbf{ \overline{BZ} =\frac{4}{5}s } \quad \mathbf{h=\frac{12}{5}} \\ \frac{3}{5}s \cdot \frac{4}{5}s &=& s\cdot(\frac{12}{5}-s) \\ \frac{12}{25}s &=& \frac{12}{5}-s \\ s+\frac{12}{25}s &=& \frac{12}{5} \\ s \cdot \left(1+\frac{12}{25} \right) &=& \frac{12}{5} \\ s \cdot \left(\frac{25+12}{25} \right) &=& \frac{12}{5} \\ s \cdot \left(\frac{37}{25} \right) &=& \frac{12}{5} \\ s &=& \frac{25}{37} \cdot \frac{12}{5} \\ s &=& \frac{5}{37} \cdot 12 \\ s &=& \frac{60}{37} \\ \mathbf{s} &\mathbf{=}& \mathbf{1.\overline{621}} \\ \hline \end{array}$$

The side length oft the square is $$\mathbf{1.\overline{621}}$$

heureka  Jul 28, 2017
#2
+75287
+2

Thanks, heureka....here's another way using similar triangles...

Referring to heureka's pic....let the side of the square = s ...let WA  = x  and let BW  = 3 - x

Now....triangles ABC, AXW and WBZ are all similar

Using triangles ABC and AXW, we have that  XW / AW  = BC/ AC →  s / x  =  4 / 5  →  s  = (4/5)x  →  s  = .8x

And using triangles ABC  and WBZ, we have that  BW / ZW  = BA / CA  →  (3 - x ) / s  = 3 / 5  →  (3 - x) / (.8x)  = .6

Multiply both sides by  .8x  and we have that

3 - x  = .48x      add x to  both sides

3  = 1.48x       divide both sides by 1.48

3 / 1.48  = x   =  75 / 37    ..... and s  is .8   of  this  =  600 / 370  = 60/37 units

CPhill  Jul 29, 2017

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details