+0

# What is the area of the triangle whose vertices are D(−7, 3) , E(−7, 9) , and F(−11, 7) ?

0
38
2
+151

What is the area of the triangle whose vertices are  D(−7, 3) ,  E(−7, 9) , and  F(−11, 7) ?

___units²

sii1lver  Jan 7, 2018

#1
+5888
+1

There are a few ways to do this... here's one way..

Draw a rectangle around the triangle, so...

area of the triangle in question  =  area of the rectangle  -  area of the triangles around it

area of triangle in question   =   (4 * 6)  -  ( 1/2 * 4 * 4 )  -  ( 1/2 * 4 * 2 )

area of triangle in question   =   24  -  8  -  4   =   12   sq. units

hectictar  Jan 7, 2018
edited by hectictar  Jan 7, 2018
Sort:

#1
+5888
+1

There are a few ways to do this... here's one way..

Draw a rectangle around the triangle, so...

area of the triangle in question  =  area of the rectangle  -  area of the triangles around it

area of triangle in question   =   (4 * 6)  -  ( 1/2 * 4 * 4 )  -  ( 1/2 * 4 * 2 )

area of triangle in question   =   24  -  8  -  4   =   12   sq. units

hectictar  Jan 7, 2018
edited by hectictar  Jan 7, 2018
#2
+80874
+2

Here's one more method of determining the area using something known as Pick's Theorem

We can use this whenever the vertices of the triangle are lattice points  [ the vertices have integer coordinates}

Area  =  B/2  +  I   -  1

Where B  is the number of  lattice points on the triangle's edge  = 12

And  I   is the number of lattice points in the interior of the triangle  = 7

So....we have

Area  =  12/2  + 7  -  1    =    6 +  7  - 1  =   12 units^2

CPhill  Jan 8, 2018

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details