+0

# What is the area of this triangle?

0
29
3

The line L is a tangent to the circle x+ y= 50 at the point A.

Line L crosses the x-axis at the point P.

Work out the area of triangle OAP. (O being the centre of the circle)

Guest Sep 13, 2017
Sort:

#1
+71
0

First, length of OA is $$\sqrt50$$as it's a radius of the circle. No need to simplify this,soon see why..

Now since line AP lies on the tangent line L ,then AP/OA   = tan 90 deg

So AP/OA = 1

AP/$$\sqrt50 = 1$$

So AP is also $$\sqrt50$$

Area of triangle is 1/2 base  X height

= 1/2   X $$\sqrt50*\sqrt50$$

=  1/2  X 50

=  25

frasinscotland  Sep 13, 2017
#2
+76038
+2

Let's look at this a little closer......I don't know if "Point A"  is some specific point   or any random point on the circle.....but....if it's a random point.......look at this graph

Let  " Point  A "  be on the on the circle   =  ( a , sqrt (r^2 - a^2))

The slope of  the tangent line to this circle will be   =    -a / sqrt (r^2 - a^2)

So....the equation of a  line tangent to  the circle at  this point  is

y =  [ -a / sqrt (r^2 - a^2)] ( x - a) +  sqrt (r^2  - a^2)

To find "Point P"  let  y  = 0   we have that

0 =   [ -a / sqrt (r^2 - a^2)] ( x - a)  +  sqrt (r^2  - a^2)

[ a / sqrt (r^2 - a^2)] ( x - a)   =   sqrt (r^2  - a^2)

a (x - a)   =   r^2 - a^2

ax - a^2  =  r^2  - a^2

ax =  r^2

x  = r^2 / a   ...   so  "Point P"   (  r^2/ a , 0 )

So.......  the   the base of triangle OAP will  be  r^2 / a      and the height will be sqrt ( r^2 - a^2)

So....the area of this triangle will be    (1/2) (r^2 / a) sqrt (r^2 - a^2)  =    (r^2) sqrt (r^2 - a^2) / [ 2a ]

So....suppose  r  = sqrt (50)  and  a  = 4

Then the area of triangle OAP  will  be    50 sqrt (34) / 8  ≈  36.44 sq units

But suppose that   r =sqrt (50) and  a  = 2

Then the area of triangle OAP  will be  50 sqrt ( 46) / 4  ≈ 84.78 sq units

CPhill  Sep 13, 2017
edited by CPhill  Sep 13, 2017
edited by CPhill  Sep 14, 2017
#3
+76038
+2

As an addendum to my answer.....I believe  that frasinscotland's  answer will be true if "Point A"  is (5,5)

Point P will be located at  ( 50/5, 0)  = (10,0)

So AP  will have a length of   sqrt   [ (10 - 5)^2  + ( 5 - 0)^2 ]  =  sqrt ( 25 + 25)  = sqrt (50)

And this will be  equal  to  OA

CPhill  Sep 13, 2017

### 33 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details