+0  
 
0
232
2
avatar

what is the derivative of -6*sec(sin(5x^2+3x+2))

Guest Mar 15, 2015

Best Answer 

 #1
avatar+80866 
+10

 -6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have

sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)

And applying the -6 back, we have

(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)

 

  

CPhill  Mar 15, 2015
Sort: 

2+0 Answers

 #1
avatar+80866 
+10
Best Answer

 -6*sec(sin(5x^2+3x+2)).....we will apply the -6 back at the end....using the chain rule several times we have

sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2) * (10x + 3)

And applying the -6 back, we have

(-60x - 18)*sec(sin(5x^2 + 3x + 2))*tan(sin(5x^2 + 3x + 2)) *cos(5x^2 + 3x + 2)

 

  

CPhill  Mar 15, 2015
 #2
avatar+91432 
+5

Thanks CPhill, I just want to see if I can do it too.        (๑‵●‿●‵๑)

 

Mmm that looks tricky.

 

 

let

$$y= -6*sec(sin(5x^2+3x+2))$$

let

$$\\g = sin(5x^2+3x+2)\\\\
\frac{dg}{dx}=(10x+3)[cos(5x^2+3x+2)]\\\\\\
y=-6sec(g)\\\\
y=-6(cos(g))^{-1}\\\\
\frac{dy}{dg}=6(cos(g))^{-2}(-sin(g))\\\\
\frac{dy}{dg}=\frac{-6sin(g)}{cos^2(g)}\\\\\\
\frac{dy}{dx}=\frac{dy}{dg}\times \frac{dg}{dx}\\\\
\frac{dy}{dx}=\frac{-6sin(g)}{cos^2(g)}\times (10x+3)[cos(5x^2+3x+2)]\\\\$$

 

$$\\\frac{dy}{dx}=\frac{-6sin(g)(10x+3)[cos(5x^2+3x+2)]}{cos^2(g)}\\\\ \frac{dy}{dx}=\frac{-6sin(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}{cos^2(sin(5x^2+3x+2))}\\\\ \frac{dy}{dx}=-6tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}\\\\
\frac{dy}{dx}=-(60x+18)tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))[cos(5x^2+3x+2)]}\\\\$$

 

WOW this is the same as CPhill's answer     (๑‵●‿●‵๑)

Melody  Mar 16, 2015

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details