+0  
 
0
94
2
avatar

What is the remainder of 5^2010 when it is divided by 7?

Guest Aug 9, 2017
Sort: 

2+0 Answers

 #1
avatar
0

5^2010 when it is divided by 7?

 

5^2010 mod 7 =1 The remainder.

Guest Aug 9, 2017
 #2
avatar+18573 
0

What is the remainder of 5^2010 when it is divided by 7?

 

\(\begin{array}{rcll} 5^{2010} \pmod {7} &=& \ ? \end{array}\)

 

\(\small{ \begin{array}{|lrcll|} \hline 1. & gcd(7,5) &=& 1 \qquad | \qquad 7 \text{ and } 5 \text{ are relatively prim } \\ 2. & 7 \text{ is a prim number } \\ 3. & \phi() \text{ is Euler's totient function, Euler's phi function }\\ & \phi(p) &=& p-1 \qquad p \text{ is a prim number} \\ & \phi(7) &=& 7-1 \\ & \phi(7) &=& {\color{red}6} \\ 4. & 5^{\phi(7)} &\equiv& 1 \pmod{7} \\ & 5^{{\color{red}6}} &\equiv& 1 \pmod{7} \\ \hline &\text{ Let } \phi(n) \text{ denote the totient function. } \\ &\text{Then } a^{\phi(n)} \equiv 1 \pmod {n} \text{ for all } a \text{ relatively prime to } n. \\ \hline \end{array} }\)

 

\(\begin{array}{lrcll} 5. & 2010 &=& {\color{red}6}\cdot 335 \\ & 5^{2010 } \pmod{7} &=& 5^{ {\color{red}6}\cdot 335 } \pmod{7} \\ & &=& ( 5^{ {\color{red}6} } )^{335} \pmod{7} \quad & | \quad 5^{{\color{red}6}} \equiv {\color{blue}1} \pmod{7} \\ & &\equiv& ( {\color{blue}1} )^{335} \pmod{7} \\ & &\equiv& 1 \pmod{7} \\ \end{array}\)

 

The remainder of \(\frac{5^{2010}} {7}\) is \(\mathbf{1}\)

 

laugh

heureka  Aug 9, 2017

32 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details