+0

# What is the scale factor used to create the dilation?

0
66
4
+362

The smaller triangle is a pre-image of the bigger triangle. The center of dilation is (2, −1).

What is the scale factor used to create the dilation?

AngelRay  Nov 6, 2017
Sort:

#2
+8826
+2

I think it's -2

Omi67  Nov 7, 2017
#3
+18715
+2

What is the scale factor used to create the dilation?
The smaller triangle is a pre-image of the bigger triangle. The center of dilation is (2, -1).
What is the scale factor used to create the dilation?

Let $$\vec{A} = \binom{-1}{-1}$$ before dilation
Let $$\vec{A'} = \binom{8}{-1}$$ after dilation
Let $$\vec{C} = \binom{2}{-1}$$ the center of dilation
Let $$\lambda$$ is the scale factor used to create the dilation

Formula for dilation with vector A:
$$\lambda = -2$$

$$\begin{array}{|rcll|} \hline \vec{A'} &=& (\vec{A}-\vec{C})\cdot \lambda + \vec{C} \quad & | \quad \lambda = -2 \\ \binom{8}{-1} &\overset{?}{=}& \Big(\binom{-1}{-1}-\binom{2}{-1} \Big)\cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-1-2}{-1-(-1)} \cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3}{0} \cdot (-2) + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3\cdot (-2)}{0\cdot (-2)} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{6}{0} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{6+2}{0-1} \\ &\overset{!}{=}& \binom{8}{-1}~ \checkmark \\ \hline \end{array}$$

$$\lambda = 2$$
$$\begin{array}{|rcll|} \hline \vec{A'} &=& (\vec{A}-\vec{C})\cdot \lambda + \vec{C} \quad & | \quad \lambda = 2 \\ \binom{8}{-1} &\overset{?}{=}& \Big(\binom{-1}{-1}-\binom{2}{-1} \Big)\cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-1-2}{-1-(-1)} \cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3}{0} \cdot 2 + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-3\cdot 2}{0\cdot 2} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-6}{0} + \binom{2}{-1} \\ &\overset{?}{=}& \binom{-6+2}{0-1} \\ & \ne & \binom{-4}{-1} \\ \hline \end{array}$$

heureka  Nov 7, 2017
edited by heureka  Nov 7, 2017
#4
+78756
+1

Thanks, Omi and heureka.........I was unsure about this one  !!!

CPhill  Nov 7, 2017
edited by CPhill  Nov 7, 2017

### 8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details