+0  
 
0
692
2
avatar

What is the smallest possible value of 2x^4 + \frac{8}{x^4} over all real nonzero values of x?

 Oct 31, 2014

Best Answer 

 #2
avatar+118608 
+5

f(x)=   2x^4 + \frac{8}{x^4} 

 

Find the turning points of the function    f'(x)=0

 

$$\\f(x)=2x^4+8x^{-4}\\\\
f'(x)=8x^3-32x^{-5}\\\\
f'(x)=8x^3(1-4x^{-8})\\\\
f"(x)=24x^2+160x^{-6}>0 $ except when x=0 but $x\ne 0\\\\
x\ne 0 \;\;$so minimum points occur when $\\\\
1-\;4x^{-8}=0\\\\
1=\;4x^{-8}\\\\
\frac{1}{4}=\frac{1}{x^8}\\\\
x^8=4\\\\
x=\pm\;2^{1/4}\\\\
x\approx \pm\;1.1892\\\\$$

 

$$\\When\;\; x=\pm\;2^{1/4}\\\\
f(\pm 2^{1/4})=2\times (2^{1/4})^4+8(2^{1/4})^{-4}\\\\
f(\pm 2^{1/4})=2\times 2+8(2^{-1})\\\\
f(\pm 2^{1/4})=4+4\\\\
f(\pm 2^{1/4})=8\\\\$$

 

So the smallest value of the expression is 8

 

Here is a graph to verify what i have said  

 

https://www.desmos.com/calculator/2ybonktd3t

 Nov 1, 2014
 #1
avatar+128406 
+5

So we want to minimize  2x^4 + 8x^(-4)

Take the derivative and set this to 0

8x^3 - 32x^(-5) = 0       factor

8x^(-5) [x^8 - 4] = 0    ignore the frst factor, it can never be 0

x^8 - 4 = 0

x^8  = 4        take the ±roots....  x = ±(4)^(1/8)  = about ±1.189

Now, take the second derivative and see which critical points (if any) produce a positive result

24x^2 + 160x^(-6)   and both points will produce positive results, so both are minimums

Here's the graph of the function........https://www.desmos.com/calculator/oeqrmz5jb1

 

 Oct 31, 2014
 #2
avatar+118608 
+5
Best Answer

f(x)=   2x^4 + \frac{8}{x^4} 

 

Find the turning points of the function    f'(x)=0

 

$$\\f(x)=2x^4+8x^{-4}\\\\
f'(x)=8x^3-32x^{-5}\\\\
f'(x)=8x^3(1-4x^{-8})\\\\
f"(x)=24x^2+160x^{-6}>0 $ except when x=0 but $x\ne 0\\\\
x\ne 0 \;\;$so minimum points occur when $\\\\
1-\;4x^{-8}=0\\\\
1=\;4x^{-8}\\\\
\frac{1}{4}=\frac{1}{x^8}\\\\
x^8=4\\\\
x=\pm\;2^{1/4}\\\\
x\approx \pm\;1.1892\\\\$$

 

$$\\When\;\; x=\pm\;2^{1/4}\\\\
f(\pm 2^{1/4})=2\times (2^{1/4})^4+8(2^{1/4})^{-4}\\\\
f(\pm 2^{1/4})=2\times 2+8(2^{-1})\\\\
f(\pm 2^{1/4})=4+4\\\\
f(\pm 2^{1/4})=8\\\\$$

 

So the smallest value of the expression is 8

 

Here is a graph to verify what i have said  

 

https://www.desmos.com/calculator/2ybonktd3t

Melody Nov 1, 2014

4 Online Users

avatar