+0

# what the descride transformation (3,1),(0,-5),(-4,-2)

0
127
2

what the descride transformation (3,1),(0,-5),(-4,-2)

off-topic
Guest Apr 23, 2017
Sort:

#1
+7059
0

what the descride transformation (3,1),(0,-5),(-4,-2)

A graph through the three points may be a circle or a second-degree parabola, 3rd degree or higher degree.

Circle:

$$x_M=\frac{x_1+x_2+x_3}{3}=\frac{3+0-4}{3}\\x_M=\frac{7}{3}$$

$$y_M=\frac{y_1+y_2+y_3}{3}=\frac{1-5-2}{3}\\y_M=-2$$

$$r=\sqrt{(x_M-x_1)^2+(y_M-y_1)^2}$$

$$r=\sqrt{(\frac{7}{3}-3)^2+(-2-1)^2}$$

$$r=\sqrt{(-\frac{2}{3})^2+(-3)^2}=\sqrt{\frac{4}{9}+9}=\sqrt{\frac{85}{9}}$$

$$r=\frac{\sqrt{85}}{3}$$

Circular function

$$x^2+y^2=r^2$$

$$x^2+y^2=\frac{85}{9}$$

!

asinus  Apr 23, 2017
#2
+7059
0

transformation (3,1),(0,-5),(-4,-2)

Parable of three points

$$y=ax^2+bx+c$$

A ) $$1=a\cdot 3^2+3b+c\\9a+3b+c=1$$

B)  $$-5=0a+0b+c\\c=-5$$

C)  $$-2=16a-4b+c\\16a-4b-5=-2$$

A)  $$9a+3b-5=1\\a=\frac{6-3b}{9}$$

C)  $$16a-4b=3\\a=\frac{4b+3}{16}$$

A)&C)  $$\frac{6-3b}{9}=\frac{4b+3}{16}\\96-48b=36b+27\\84b=69\\b=\frac{69}{84}=\frac{3\cdot23}{2\cdot2\cdot21}\\b=0.821$$

A)&C)⇒A) $$a=\frac{6-3\cdot \frac{69}{84}}{9}=\frac{6}{9}-\frac{3\cdot69}{9\cdot84}\\a=0.393$$

$$\color{blue}{y=ax^2+bx+c\\y=0.393x^2+0.821x-5}$$

!

asinus  Apr 23, 2017

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details