+0  
 
0
196
3
avatar+6765 

I was doing some integrations and one of the problems is: \(\displaystyle \int x^3\sqrt{9-x^2}\mathtt{dx}\)

The answer says: \(-\dfrac{x^2}{3}(9-x^2)^{3/2}-\dfrac{2}{15}(9-x^2)^{5/2}+C\)

Here is my answer:

\(\qquad\displaystyle \int x^3\sqrt{9-x^2}\mathtt{dx}\\ \text{Let }u=x^3, dv=\sqrt{9-x^2}dx, du = 3x^2dx, v=\dfrac{x\sqrt{9-x^2}+9\arcsin(\dfrac{x}{3})}{2}\\ =\dfrac{x^4\sqrt{9-x^2}+9x^3\arcsin(\dfrac{x}{3})}{2}+\dfrac{(3x^2+18)\sqrt{(9-x^2)^3}-45x^3\arcsin(\dfrac{x}{3})-\sqrt{9-x^2}(15x^2+270)}{10}+C\\ =\dfrac{x^4\sqrt{9-x^2}}{2}+\dfrac{(3x^2+18)(9-x^2)^{3/2}}{10}+\sqrt{9-x^2}(\dfrac{3x^2}{2}+27)+C\)

WHAT IS GOING ON!!!!

MaxWong  Apr 13, 2017
Sort: 

3+0 Answers

 #1
avatar+1508 
0

????      

MysticalJaycat  Apr 13, 2017
 #2
avatar
0

Take the integral:
 integral x^3 sqrt(9 - x^2) dx

For the integrand x^3 sqrt(9 - x^2), substitute u = x^2 and du = 2 x dx:
 = 1/2 integral sqrt(9 - u) u du
For the integrand sqrt(9 - u) u, substitute s = 9 - u and ds = - du:

= 1/2 integral(s - 9) sqrt(s) ds
Expanding the integrand (s - 9) sqrt(s) gives s^(3/2) - 9 sqrt(s):
 = 1/2 integral(s^(3/2) - 9 sqrt(s)) ds
Integrate the sum term by term and factor out constants:
 = 1/2 integral s^(3/2) ds - 9/2 integral sqrt(s) ds
The integral of s^(3/2) is (2 s^(5/2))/5:
 = s^(5/2)/5 - 9/2 integral sqrt(s) ds
The integral of sqrt(s) is (2 s^(3/2))/3:
 = s^(5/2)/5 - 3 s^(3/2) + constant
Substitute back for s = 9 - u:
 = 1/5 (9 - u)^(5/2) - 3 (9 - u)^(3/2) + constant
Substitute back for u = x^2:
 = 1/5 (9 - x^2)^(5/2) - 3 (9 - x^2)^(3/2) + constant
Which is equal to:
Answer: | = -1/5 (9 - x^2)^(3/2) (x^2 + 6) + constant

Guest Apr 13, 2017
 #3
avatar
0

Max: Check your answer against this step-by-step answer here:

http://www.integral-calculator.com/

Guest Apr 13, 2017

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details