+0  
 
0
240
1
avatar

Which expression is equal to 2√54−4√24?

A. -√6

B. -2√6

C. -11√6

D. √6

Guest Sep 15, 2017

Best Answer 

 #1
avatar
0

Simplify the following:
2 sqrt(54) - 4 sqrt(24)

Hint: | Simplify radicals.
sqrt(54) = sqrt(2×3^3) = 3 sqrt(2) sqrt(3):
2×3 sqrt(2) sqrt(3) - 4 sqrt(24)

Hint: | For a>=0, sqrt(a) sqrt(b) = sqrt(a b). Apply this to sqrt(2) sqrt(3).
sqrt(2) sqrt(3) = sqrt(2×3):
2×3 sqrt(2×3) - 4 sqrt(24)

Hint: | Multiply 2 and 3 together.
2×3 = 6:
2×3 sqrt(6 ) - 4 sqrt(24)

Hint: | Simplify radicals.
sqrt(24) = sqrt(2^3×3) = 2 sqrt(2) sqrt(3):
2×3 sqrt(6) - 42 sqrt(2) sqrt(3)

Hint: | For a>=0, sqrt(a) sqrt(b) = sqrt(a b). Apply this to sqrt(2) sqrt(3).
sqrt(2) sqrt(3) = sqrt(2×3):
2×3 sqrt(6) - 4×2 sqrt(2×3)

Hint: | Multiply 2 and 3 together.
2×3 = 6:
2×3 sqrt(6) - 4×2 sqrt(6 ) 

Hint: | Multiply 2 and 3 together.
2×3 = 6:
6 sqrt(6) - 4×2 sqrt(6)

Hint: | Multiply -4 and 2 together.
-4×2 = -8:
6 sqrt(6) + -8 sqrt(6)

Hint: | Combine like terms in 6 sqrt(6) - 8 sqrt(6).
6 sqrt(6) - 8 sqrt(6) = -2 sqrt(6): 
 = -2 sqrt(6)

Guest Sep 15, 2017
Sort: 

1+0 Answers

 #1
avatar
0
Best Answer

Simplify the following:
2 sqrt(54) - 4 sqrt(24)

Hint: | Simplify radicals.
sqrt(54) = sqrt(2×3^3) = 3 sqrt(2) sqrt(3):
2×3 sqrt(2) sqrt(3) - 4 sqrt(24)

Hint: | For a>=0, sqrt(a) sqrt(b) = sqrt(a b). Apply this to sqrt(2) sqrt(3).
sqrt(2) sqrt(3) = sqrt(2×3):
2×3 sqrt(2×3) - 4 sqrt(24)

Hint: | Multiply 2 and 3 together.
2×3 = 6:
2×3 sqrt(6 ) - 4 sqrt(24)

Hint: | Simplify radicals.
sqrt(24) = sqrt(2^3×3) = 2 sqrt(2) sqrt(3):
2×3 sqrt(6) - 42 sqrt(2) sqrt(3)

Hint: | For a>=0, sqrt(a) sqrt(b) = sqrt(a b). Apply this to sqrt(2) sqrt(3).
sqrt(2) sqrt(3) = sqrt(2×3):
2×3 sqrt(6) - 4×2 sqrt(2×3)

Hint: | Multiply 2 and 3 together.
2×3 = 6:
2×3 sqrt(6) - 4×2 sqrt(6 ) 

Hint: | Multiply 2 and 3 together.
2×3 = 6:
6 sqrt(6) - 4×2 sqrt(6)

Hint: | Multiply -4 and 2 together.
-4×2 = -8:
6 sqrt(6) + -8 sqrt(6)

Hint: | Combine like terms in 6 sqrt(6) - 8 sqrt(6).
6 sqrt(6) - 8 sqrt(6) = -2 sqrt(6): 
 = -2 sqrt(6)

Guest Sep 15, 2017

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details