+0  
 
0
137
2
avatar

sin(arcsin x + arccos x)

 

answer: 1

how???

Guest May 7, 2017
Sort: 

2+0 Answers

 #1
avatar+77165 
+1

 

Note that   arcsin x   =   some angle ...  and the arccos x   will be the angle that is complementary  to  this angle

 

To see this....suppose  that x = 1/2....then    arcsin (1/2)  = 30°  

 

And  arccos (1/2)     =  60°

 

So    arcsin x  +  arccos x   =   30° +  60°  = 90°

 

And   sin (90°)  =   1

 

 

cool cool cool 

CPhill  May 7, 2017
 #2
avatar+18629 
0

sin(arcsin x + arccos x)


i)
\(\begin{array}{lrcll} & \cos{(\varphi)} &=& x \\ \text{or}& \quad \varphi &=& \arccos{(x)}\\ \end{array} \)

 

ii)
\(\begin{array}{lrclcl} &\sin{(90^\circ-\varphi)} &=& \cos{(\varphi)} &=& x \\ \text{or}& \quad 90^\circ-\varphi && &=& \arcsin{(x)}\\ \end{array} \)

 

iii)

\(\begin{array}{rcll} && \sin\Big(\arcsin(x)+\arccos(x)\Big) \\ &=& \sin(90^\circ-\varphi+\varphi) \\ &=& \sin(90^\circ)\\ &=& 1\\ \end{array}\)

 

laugh

heureka  May 8, 2017
edited by heureka  May 8, 2017

22 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details