+0  
 
0
104
2
avatar

If y = x3  the x = y1/3

Find the derivative of dy/dx and dx/dy, and henc show that dy/dx * dx/dy = 1.

 

My derivatives were: 3x2 and 1/ (3 root3of(y2))

When I multiplied them together I got: x2 / root3of(y2)). Where I got stuck.

 

Can you show me the correct answer? 

Thanks.

Guest Jul 26, 2017
edited by Guest  Jul 26, 2017

Best Answer 

 #1
avatar+26273 
+3

As follows:

 

\(y=x^3\quad \frac{dy}{dx}=3x^2\\x=y^{1/3}\quad \frac{dx}{dy}=\frac{1}{3}y^{-2/3}\rightarrow \frac{1}{3y^{2/3}} \rightarrow \frac{1}{3(y^{1/3})^2}\rightarrow \frac{1}{3x^2}\)

 

Now you should be able to see that dy/dx*dx/dy = 1

.

Alan  Jul 26, 2017
Sort: 

2+0 Answers

 #1
avatar+26273 
+3
Best Answer

As follows:

 

\(y=x^3\quad \frac{dy}{dx}=3x^2\\x=y^{1/3}\quad \frac{dx}{dy}=\frac{1}{3}y^{-2/3}\rightarrow \frac{1}{3y^{2/3}} \rightarrow \frac{1}{3(y^{1/3})^2}\rightarrow \frac{1}{3x^2}\)

 

Now you should be able to see that dy/dx*dx/dy = 1

.

Alan  Jul 26, 2017
 #2
avatar
-1

                           x+y

Guest Jul 27, 2017

21 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details