Register
Login
Username
Password
Login
forgot your password?
Home
Forum
+0
Formulary
Maths
Help
Complex Numbers
Integral Calculus
Differential Calculus
Equations
Graphs
Linear Algebra
Number theory
Percent
Standard Functions
Statistics
Trigonometry
Unit Conversion
Units
About
Imprint
Privacy Policy
Terms of Service
Credits
Google+
Facebook
Contact Email
HumanBemg
Username
HumanBemg
Score
75
Membership
Stats
Questions
18
Answers
2
18 Questions
2 Answers
0
2
0
+75
Algebra
Find x if \log_2 x^2 + \log_{1/2} x + 3 \log_4 x = 5.
HumanBemg
Mar 8, 2025
0
2
0
+75
Algebra
Simplify 25^{\frac{1}{2} - \log 5 + \sqrt{3}}.
HumanBemg
Mar 8, 2025
0
2
1
+75
Algebra
Compute
\log_4 5 + \log_5 6 + \log_6 7+ \log_{2047} 2048 + \log_{2048} 2049
●
HumanBemg
Mar 8, 2025
0
1
0
+75
Algebra
Fill in the blanks, to make a true equation.
3/(3^2 - 1) + 3^2/(3^4 - 1) + 3^3/(3^6 - 1) + 3^4/(3^8 - 1) + ... + 3^(2(n - 1))/(3^(2n) - 1) = ___/___
HumanBemg
Mar 8, 2025
0
1
0
+75
Counting
Let S be the set {1, 2, 3, \dots, 10, 11, 12}. How many subsets of the set S have no two consecutive primes as members?
HumanBemg
Mar 7, 2025
0
1
0
+75
Algebra
Let
A_0 = 0
A_1 = 1
A_n = A_{n - 1} + A_{n - 2} for n ge 2
There is a unique ordered pair (c,d) such that c \alpha^n + d \beta^n is the closed form for sequence A_n. Find the ordered pair (c,d).
HumanBemg
Mar 7, 2025
0
1
0
+75
Algebra
Find the ordered pair (p,q) such that
F_n = p \alpha^n + q \beta^n.
HumanBemg
Mar 7, 2025
0
1
1
+75
Algebra
The Fibonacci sequence, is defined by F_0 = 0, F_1 = 1, and F_n = F_{n - 2} + F_{n - 1}. It turns out that
F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}},
where \alpha = \frac{1 + \sqrt{5}}{2} and \beta = \frac{1 - \sqrt{5}}{2}.
The
read more ..
●
HumanBemg
Mar 7, 2025
0
1
0
+75
Algebra
Find a closed form for
S_n = 1! \cdot (1^2 + 1) + 2! \cdot (2^2 + 2) + \dots + n! \cdot (n^2 + n).\]
for any integer n \ge 1. Your response should have a factorial.
HumanBemg
Mar 7, 2025
0
1
0
+75
Algebra
For a positive integer k, let
S_k = 1 \cdot 1! \cdot 2 + 2 \cdot 2! \cdot 3 + \dots + k \cdot k! \cdot (k + 1).
Find a closed form for S_k.
HumanBemg
Mar 7, 2025
0
1
1
+75
Algebra
Let r be a real number such that |r| < 1. Express
\sum_{n = 0}^{\infty} n*r^n*(n + 1)*(n + 2)
in terms of r.
●
HumanBemg
Mar 6, 2025
0
1
1
+75
Algebra
Find
\sum_{k = 0}^{10} (k + 3) \cdot 2^k \cdot (k - 3)
●
HumanBemg
Mar 6, 2025
0
1
2
+75
Algebra
Simplify \frac{1 + 3 + 5 + ... + 1999 + 2001 + 2003}{2 + 4 + 6 + ... + 2000 + 2002 + 2004 + 2006 + 2008 + 2010}.
●
●
HumanBemg
Mar 6, 2025
+1
1
1
+75
Algebra
Find the sum
\frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3} + \frac{1}{7^4} + \frac{2}{7^5} + \frac{3}{7^6}
●
HumanBemg
Mar 6, 2025
0
1
1
+75
Algebra
Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions:
2mn - 18m + 7n - 3mn + 15m + 8n + ___
●
HumanBemg
Mar 3, 2025
0
1
0
+75
Algebra
Fill in the blanks, to complete the factorizaion:
(a^2 + b^2 - c^2)^2 - 4a^2 b^2 - 4a^2 c^2 + 4b^2 c^2 = (a + ___)(a + ___)(a + ___)(a + ___)
HumanBemg
Mar 3, 2025
0
1
0
+75
Algebra
Let r_1, r_2, r_3, r_4, and r_5 be the complex roots of x^5 - 4x^2 + 7x - 1 = 0. Compute
(r_1^2 + r_1^6 + 2)(r_2^2 + r_2^6 + 2)(r_3^2 + r_3^6 + 2)(r_4^2 + r_4^6 + 2)(r_5^2 + r_5^6 + 2)
HumanBemg
Mar 3, 2025
0
2
0
+75
Algebra
Factor 3xy - 4x^2 + 18y - 24x + 5x^2*y - 8y^3 + 20.
HumanBemg
Mar 3, 2025
«
latest
0
-1
2
latest
»
#1
+75
0
(A) k > 0 and a > 1
(B) k < 0 and a < 1
(C) k < 0 and a > 1
(D) k > 0 and a < 1
HumanBemg
Mar 8, 2025