$$\left({{\mathtt{3}}}^{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}\right)}\right){\mathtt{\,\times\,}}\left({{\mathtt{5}}}^{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}\right) = {{\mathtt{15}}}^{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}$$

*We got a lot of messyness in the powers here. We can split them into more individual numbers to seperate off the constants and variables.*

$${{\mathtt{3}}}^{{\mathtt{x}}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{x}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{-{\mathtt{1}}} = {{\left({{\mathtt{15}}}^{{\mathtt{2}}}\right)}}^{{\mathtt{x}}}$$

$${\mathtt{9}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{5}}}}\right){\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{x}}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{{\mathtt{x}}} = {{\mathtt{225}}}^{{\mathtt{x}}}$$

$$\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right){\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{x}}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{{\mathtt{x}}} = {{\mathtt{225}}}^{{\mathtt{x}}}$$

*Now we can put everything into logarithm form. Remember:*

**Log(a^b) = b * log(a)**

**Log(a*b) = log(a) + log(b)**

$${log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{5}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{3}}\right) = {\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{225}}\right)$$

Let's move over all the 'x' multiples over, so we can handle them together.

$${log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right) = {\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{225}}\right){\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{5}}\right){\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{3}}\right)$$

Factorise it a little, so we can now split the "x" from the rest of the formula

$${log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right) = {\mathtt{x}}{\mathtt{\,\times\,}}\left({log}_{10}\left({\mathtt{225}}\right){\mathtt{\,-\,}}{log}_{10}\left({\mathtt{5}}\right){\mathtt{\,-\,}}{log}_{10}\left({\mathtt{3}}\right)\right)$$

Simplify the logarithms and re-arrange the forumula

$${log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right) = {\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\frac{\left({\frac{{\mathtt{225}}}{{\mathtt{5}}}}\right)}{{\mathtt{3}}}}\right)$$

$${log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right) = {\mathtt{x}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{15}}\right)$$

$${\frac{{log}_{10}\left({\frac{{\mathtt{9}}}{{\mathtt{5}}}}\right)}{{log}_{10}\left({\mathtt{15}}\right)}} = {\mathtt{x}}$$

$${\mathtt{x}} = {\mathtt{0.217\: \!051\: \!613\: \!246\: \!638\: \!7}}$$