syllogist

avatar
Usernamesyllogist
Score125
Stats
Questions 0
Answers 21

 #1
avatar+125 
+8
syllogist Jun 19, 2015
 #1
avatar+125 
+8

$${\mathtt{y}} = {{\mathtt{x}}}^{{\mathtt{3}}}$$

$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{y}} = {\mathtt{2}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{2}}\\
{\mathtt{y}} = -{\mathtt{1}}\\
\end{array} \right\}$$

$${{\mathtt{x}}}^{{\mathtt{3}}} = {\mathtt{2}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\frac{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{0.629\: \!960\: \!524\: \!947\: \!436\: \!6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.091\: \!123\: \!635\: \!972\: \!428\: \!7}}{i}\\
{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{0.629\: \!960\: \!524\: \!947\: \!436\: \!6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.091\: \!123\: \!635\: \!972\: \!428\: \!7}}{i}\right)\\
{\mathtt{x}} = {\mathtt{1.259\: \!921\: \!049\: \!894\: \!873\: \!2}}\\
\end{array} \right\}$$

$${{\mathtt{x}}}^{{\mathtt{3}}} = -{\mathtt{1}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = -{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.866\: \!025\: \!403\: \!785}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.866\: \!025\: \!403\: \!785}}{i}\\
{\mathtt{x}} = -{\mathtt{1}}\\
\end{array} \right\}$$

So the real solutions are:

  • $${\mathtt{x}} = {{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}$$
  • $${\mathtt{x}} = -{\mathtt{1}}$$
syllogist Jun 19, 2015
 
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy