Notice that only 2^n rows (where n is a positive integer) can obtain this property, where the row only contains even numbers except for the beginning and the end. (For example, only row 2^1 = 2, row 2^2=row 4, row 2^3=row 8, and so on). There are 4 numbers that can be expressed as 2^n (where n is a positive integer) under 20 (which are 2, 4, 8, and 16), so the answer is \(\boxed{4}\).

My intuition for the fact that only 2^n rows (where n is a positive integer) can obtain this property uses the fact that the numbers in the pascal triangle can be expressed as \(\frac{n!}{p!(n-p)!}\), where n is the nth row and p is the pth number in that row. All odd numbers obviously don't work, because if p = 1, then the result is just going to be equal to n, and since n is odd, the pascal triangle contains odd numbers. Even numbers that cannot be expressed as 2^n (where n is an integer) also cannot have only even numbers, because it must also have odd factors, and if it has an odd factor, a certain value of p will cancel out all the even factors and leave the number odd, so only 2^n would work.

Also a very similar question was answered a long time ago: https://web2.0calc.com/questions/another-pascal-s-triangle-question