+0

# ​ 1. Simplify the expression . Show your work.

0
1186
1
+1016

Simplify the expression . Show your work.

Jan 17, 2018

#1
+17776
+1

Simplify:  sqrt( 4x2 / 3y )

sqrt( 4x2 / 3y )  =  sqrt( 4x2 ) / sqrt( 3y )

But  sqrt( 4x2 )  =  2·| x |                                  Technically, you need to use absolute value bars.

sqrt( 4x2 / 3y )  =  2·| x |  / sqrt( 3y )

Now, multiply both the numerator and the denominator by sqrt( 3y )

sqrt( 4x2 / 3y )  =  [ 2·| x | · sqrt( 3y) ] / [ sqrt( 3y ) · sqrt( 3y) ]

Since  [ sqrt( 3y ) · sqrt( 3y) ]  =  3y

sqrt( 4x2 / 3y )   =  [ 2·| x | · sqrt( 3y) ] / ( 3y )

Jan 17, 2018

#1
+17776
+1

Simplify:  sqrt( 4x2 / 3y )

sqrt( 4x2 / 3y )  =  sqrt( 4x2 ) / sqrt( 3y )

But  sqrt( 4x2 )  =  2·| x |                                  Technically, you need to use absolute value bars.

sqrt( 4x2 / 3y )  =  2·| x |  / sqrt( 3y )

Now, multiply both the numerator and the denominator by sqrt( 3y )

sqrt( 4x2 / 3y )  =  [ 2·| x | · sqrt( 3y) ] / [ sqrt( 3y ) · sqrt( 3y) ]

Since  [ sqrt( 3y ) · sqrt( 3y) ]  =  3y

sqrt( 4x2 / 3y )   =  [ 2·| x | · sqrt( 3y) ] / ( 3y )

geno3141 Jan 17, 2018