We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1186
1
avatar+1016 

Simplify the expression . Show your work.

 Jan 17, 2018

Best Answer 

 #1
avatar+17776 
+1

Simplify:  sqrt( 4x2 / 3y )

 

                sqrt( 4x2 / 3y )  =  sqrt( 4x2 ) / sqrt( 3y )

 

But  sqrt( 4x2 )  =  2·| x |                                  Technically, you need to use absolute value bars.

 

               sqrt( 4x2 / 3y )  =  2·| x |  / sqrt( 3y )

 

Now, multiply both the numerator and the denominator by sqrt( 3y )

 

              sqrt( 4x2 / 3y )  =  [ 2·| x | · sqrt( 3y) ] / [ sqrt( 3y ) · sqrt( 3y) ]

 

Since  [ sqrt( 3y ) · sqrt( 3y) ]  =  3y

 

               sqrt( 4x2 / 3y )   =  [ 2·| x | · sqrt( 3y) ] / ( 3y )

 Jan 17, 2018
 #1
avatar+17776 
+1
Best Answer

Simplify:  sqrt( 4x2 / 3y )

 

                sqrt( 4x2 / 3y )  =  sqrt( 4x2 ) / sqrt( 3y )

 

But  sqrt( 4x2 )  =  2·| x |                                  Technically, you need to use absolute value bars.

 

               sqrt( 4x2 / 3y )  =  2·| x |  / sqrt( 3y )

 

Now, multiply both the numerator and the denominator by sqrt( 3y )

 

              sqrt( 4x2 / 3y )  =  [ 2·| x | · sqrt( 3y) ] / [ sqrt( 3y ) · sqrt( 3y) ]

 

Since  [ sqrt( 3y ) · sqrt( 3y) ]  =  3y

 

               sqrt( 4x2 / 3y )   =  [ 2·| x | · sqrt( 3y) ] / ( 3y )

geno3141 Jan 17, 2018

12 Online Users

avatar
avatar