+0  
 
+1
539
1
avatar+557 

https://vle.mathswatch.co.uk/images/questions/question16574.png

 

 

winkwinkwink

 Apr 1, 2018

Best Answer 

 #1
avatar+8962 
+4

 

Let  27 cm  be the base of triangle CDE .

Let  h cm  be the height.

 

sin( angle )   =   opposite / hypotenuse

sin 32°  =   h / 14                                         Multiply both sides by  14 .

14 sin 32°   =   h

 

area of triangle CDE   =   (1/2)(base)(height)

area of triangle CDE   =   (1/2)(27)(14 sin 32°)

area of triangle CDE   =   189 sin 32°

area of triangle CDE   ≈   100.155

 

By the law of cosines...

EC2   =   142 + 272 - 2(14)(27) cos 32°

EC2   =   196 + 729 - 756 cos 32°

EC2   =   925 - 756 cos 32°

 

area of sector / area of circle  =  105° / 360°

area of sector   =   105° / 360° * area of circle

area of sector   =   105° / 360° * pi * EC2

area of sector   =   105° / 360° * pi * (925 - 756 cos 32°)

area of sector   ≈   260.115

 

area of logo   =   area of sector + 2(area of triangle CDE)

area of logo   ≈   260.115 + 2(100.155)

area of logo   ≈   460.425

 

And  460.425  rounded to the nearest ten   =   460   smiley

 Apr 1, 2018
edited by hectictar  Apr 1, 2018
 #1
avatar+8962 
+4
Best Answer

 

Let  27 cm  be the base of triangle CDE .

Let  h cm  be the height.

 

sin( angle )   =   opposite / hypotenuse

sin 32°  =   h / 14                                         Multiply both sides by  14 .

14 sin 32°   =   h

 

area of triangle CDE   =   (1/2)(base)(height)

area of triangle CDE   =   (1/2)(27)(14 sin 32°)

area of triangle CDE   =   189 sin 32°

area of triangle CDE   ≈   100.155

 

By the law of cosines...

EC2   =   142 + 272 - 2(14)(27) cos 32°

EC2   =   196 + 729 - 756 cos 32°

EC2   =   925 - 756 cos 32°

 

area of sector / area of circle  =  105° / 360°

area of sector   =   105° / 360° * area of circle

area of sector   =   105° / 360° * pi * EC2

area of sector   =   105° / 360° * pi * (925 - 756 cos 32°)

area of sector   ≈   260.115

 

area of logo   =   area of sector + 2(area of triangle CDE)

area of logo   ≈   260.115 + 2(100.155)

area of logo   ≈   460.425

 

And  460.425  rounded to the nearest ten   =   460   smiley

hectictar Apr 1, 2018
edited by hectictar  Apr 1, 2018

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar