+0  
 
+1
44
1
avatar+544 

https://vle.mathswatch.co.uk/images/questions/question16574.png

 

 

winkwinkwink

lynx7  Apr 1, 2018

Best Answer 

 #1
avatar+6943 
+4

 

Let  27 cm  be the base of triangle CDE .

Let  h cm  be the height.

 

sin( angle )   =   opposite / hypotenuse

sin 32°  =   h / 14                                         Multiply both sides by  14 .

14 sin 32°   =   h

 

area of triangle CDE   =   (1/2)(base)(height)

area of triangle CDE   =   (1/2)(27)(14 sin 32°)

area of triangle CDE   =   189 sin 32°

area of triangle CDE   ≈   100.155

 

By the law of cosines...

EC2   =   142 + 272 - 2(14)(27) cos 32°

EC2   =   196 + 729 - 756 cos 32°

EC2   =   925 - 756 cos 32°

 

area of sector / area of circle  =  105° / 360°

area of sector   =   105° / 360° * area of circle

area of sector   =   105° / 360° * pi * EC2

area of sector   =   105° / 360° * pi * (925 - 756 cos 32°)

area of sector   ≈   260.115

 

area of logo   =   area of sector + 2(area of triangle CDE)

area of logo   ≈   260.115 + 2(100.155)

area of logo   ≈   460.425

 

And  460.425  rounded to the nearest ten   =   460   smiley

hectictar  Apr 1, 2018
edited by hectictar  Apr 1, 2018
Sort: 

1+0 Answers

 #1
avatar+6943 
+4
Best Answer

 

Let  27 cm  be the base of triangle CDE .

Let  h cm  be the height.

 

sin( angle )   =   opposite / hypotenuse

sin 32°  =   h / 14                                         Multiply both sides by  14 .

14 sin 32°   =   h

 

area of triangle CDE   =   (1/2)(base)(height)

area of triangle CDE   =   (1/2)(27)(14 sin 32°)

area of triangle CDE   =   189 sin 32°

area of triangle CDE   ≈   100.155

 

By the law of cosines...

EC2   =   142 + 272 - 2(14)(27) cos 32°

EC2   =   196 + 729 - 756 cos 32°

EC2   =   925 - 756 cos 32°

 

area of sector / area of circle  =  105° / 360°

area of sector   =   105° / 360° * area of circle

area of sector   =   105° / 360° * pi * EC2

area of sector   =   105° / 360° * pi * (925 - 756 cos 32°)

area of sector   ≈   260.115

 

area of logo   =   area of sector + 2(area of triangle CDE)

area of logo   ≈   260.115 + 2(100.155)

area of logo   ≈   460.425

 

And  460.425  rounded to the nearest ten   =   460   smiley

hectictar  Apr 1, 2018
edited by hectictar  Apr 1, 2018

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details