+0  
 
0
102
2
avatar+103 

Coordinates plane H(-5,-6) & J(5,-1)

.Find the Point Q that is 4/5 the distance from J to H

show work

Mathisfornerds  Jan 28, 2018
Sort: 

2+0 Answers

 #1
avatar+85757 
+1

 

IMHO, It's easier to figure point Q if we realize that it also must be equal to 1/5 of the distance from H to J

 

So....we can find point Q as follows :

 

Q  =   

 

[ -5  +  (1/5) ( 5 - - 5) ,  -6 + (1/5) ( -1 - -6)  ]  =

 

[ -5 + (1/5) (10)  , - 6 + (1/5) (5) ]  =

 

[ - 5 + 2, - 6 + 1 ]

 

{ -3, - 5)  =  Q

 

 

cool cool cool

CPhill  Jan 28, 2018
 #2
avatar+19207 
+2

Coordinates plane H(-5,-6) & J(5,-1).
Find the Point Q that is 4/5 the distance from J to H

 

Formula:

\(\begin{array}{|rcll|} \hline \mathbf{\vec{Q}} &\mathbf{=}& \mathbf{(1-\lambda)\vec{J} + \lambda\vec{H}} \quad & | \quad\lambda = \dfrac45 \\\\ \vec{Q} &=& \left(1-\dfrac45 \right)\vec{J} + \dfrac45\cdot \vec{H} \\\\ &=& \dfrac15 \vec{J} + \dfrac45 \vec{H} \quad & | \quad \vec{J} = \dbinom{5}{-1} \quad \vec{H} = \dbinom{-5}{-6} \\\\ &=& \dfrac15 \dbinom{5}{-1} + \dfrac45 \dbinom{-5}{-6} \\\\ &=& \dbinom{1}{-\dfrac15} + \dbinom{-4}{-\dfrac{24}{5}} \\\\ &=& \dbinom{1}{-\dfrac15} - \dbinom{4}{\dfrac{24}{5}} \\\\ &=& \dbinom{1-4}{-\dfrac15-\dfrac{24}{5 }} \\\\ &=& \dbinom{-3}{-\dfrac{25}{5 }} \\\\ \mathbf{\vec{Q}} & \mathbf{=}& \mathbf{\dbinom{-3}{-5}} \\ \hline \end{array}\)

 

laugh

heureka  Jan 29, 2018

21 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details