+0  
 
0
181
2
avatar+129 

Coordinates plane H(-5,-6) & J(5,-1)

.Find the Point Q that is 4/5 the distance from J to H

show work

Mathisfornerds  Jan 28, 2018
 #1
avatar+89909 
+1

 

IMHO, It's easier to figure point Q if we realize that it also must be equal to 1/5 of the distance from H to J

 

So....we can find point Q as follows :

 

Q  =   

 

[ -5  +  (1/5) ( 5 - - 5) ,  -6 + (1/5) ( -1 - -6)  ]  =

 

[ -5 + (1/5) (10)  , - 6 + (1/5) (5) ]  =

 

[ - 5 + 2, - 6 + 1 ]

 

{ -3, - 5)  =  Q

 

 

cool cool cool

CPhill  Jan 28, 2018
 #2
avatar+20025 
+2

Coordinates plane H(-5,-6) & J(5,-1).
Find the Point Q that is 4/5 the distance from J to H

 

Formula:

\(\begin{array}{|rcll|} \hline \mathbf{\vec{Q}} &\mathbf{=}& \mathbf{(1-\lambda)\vec{J} + \lambda\vec{H}} \quad & | \quad\lambda = \dfrac45 \\\\ \vec{Q} &=& \left(1-\dfrac45 \right)\vec{J} + \dfrac45\cdot \vec{H} \\\\ &=& \dfrac15 \vec{J} + \dfrac45 \vec{H} \quad & | \quad \vec{J} = \dbinom{5}{-1} \quad \vec{H} = \dbinom{-5}{-6} \\\\ &=& \dfrac15 \dbinom{5}{-1} + \dfrac45 \dbinom{-5}{-6} \\\\ &=& \dbinom{1}{-\dfrac15} + \dbinom{-4}{-\dfrac{24}{5}} \\\\ &=& \dbinom{1}{-\dfrac15} - \dbinom{4}{\dfrac{24}{5}} \\\\ &=& \dbinom{1-4}{-\dfrac15-\dfrac{24}{5 }} \\\\ &=& \dbinom{-3}{-\dfrac{25}{5 }} \\\\ \mathbf{\vec{Q}} & \mathbf{=}& \mathbf{\dbinom{-3}{-5}} \\ \hline \end{array}\)

 

laugh

heureka  Jan 29, 2018

35 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.