+0  
 
-1
67
3
avatar+-291 

In the figure, each pair of consecutive sides forms a right angle. What is the area of the figure?

 Mar 27, 2020
edited by helpppp  Mar 27, 2020
 #1
avatar+21017 
+2

From the top (12") side to the bottom (9") side is 11" (found by adding the two vertical values (7" and 4") on the left-hand side.

Since there is a 3" segment on the top-right, the bottom-right length is 8" (11" - 3").

The horizontal value at the bottom-left is 8"; the horizontal value at the bottom-right is 9", for a total of 17".

Since the top-left length is 12", the top-right length is 5" (17" - 12").

 

Now, draw in some line segments and see if you can finish this. 

 

Good luck!

 Mar 27, 2020
 #2
avatar+1970 
0

Good job, geno!

CalTheGreat  Mar 27, 2020
 #3
avatar+111330 
+1

Thanks, geno....here's  another way

 

Note  that  the  height of this figure  =   7 + 4  =  11

 

And the width   =   8 + 9  =  17

 

It  we  constructed  a  large rectangle with these dimensions, if would  give us an area of 17 x 11 =  187 in^2    (1)

 

Now

 

Note  that  at the bottom left,  we   can make  a smaller  rectangle with dimensions of  

8 x 4  = 32 in^2       (2)

 

And at the top right, we  can make another smaller rectangle with dimensions of 3 x (17 -12)  = 

3 x  5    = 15 in^2       (3)

 

Then  subtracting  (2)  and (3)  from (1)  we get the area  of the firgure = 187 - 32 - 15  = 140 in^2

 

 

cool cool cool

 Mar 28, 2020

3 Online Users

avatar