+0  
 
-1
1
1
avatar+32 

A square is inscribed in a right triangle, as shown below. The legs of the triangle are 1 and 3. Find the area of the square.nd

 Sep 17, 2023
 #1
avatar+125627 
+1

 

 

 

Using similar triangles (twice)....let AD = x  and  side of the square=  s

 

AB / AE =  BC / DE

 

sqrt (10)  / sqrt (s^2 + x^2)  =  3 / s

 

10 / (s^2 + x^2)  = 9 / s^2

 

10s^2 = 9s^2 + 9x^2

 

s^2 = 9x^2

 

s = 3x    → x = s/3

 

And

 

AC / FG  = AB / BG

 

 

1 / s  =  sqrt (10)  / sqrt [ (sqrt 10 - 4x)^2 + s^2 ]

 

1/s^2 =  10 / [ (sqrt 10 - (4/3)s)^2 + s^2 ]

 

(sqrt 10 - (4/3)s )^2  + s^2  =  10s^2

 

9s^2 =  (sqrt 10 - (4/3)s)^2

 

9s^2  = 10 - (8sqrt10)s/3 + 16s^2/9

 

(65/9)s^2 - (8/3)sqrt (10)s - 10 = 0

 

Solving this for  s produces   

 

s = (3/13)sqrt (10)  =   sqrt (90) / 13

 

Area of the  square =  90 / 169

 

 

cool cool cool

 Sep 17, 2023

5 Online Users

avatar
avatar
avatar
avatar