+0  
 
0
3
1
avatar+794 

In acute triangle $ABC,$ $\angle A = 45^\circ.$  Let $D$ be the foot of the altitude from $A$ to $\overline{BC}.$  if $BD = 2$ and $CD = 4,$ then find the area of triangle $ABC.$

 Jan 4, 2024
 #1
avatar+126665 
+1

 

 

Since A = 45.....then B + C = 135  ⇒   C = 135 -B

 

tan B =  AD / BD = AD/ 2   ⇒  AD =  2tan B

tan C =  AD/CD =  AD/ 4   ⇒  AD =  4tan C

 

2 tan B  = 4 tan C    →  tan B = 2 tan C

 

So

 

 tan B  =  2 tan (135 - B)

 

tan B  =  2 [ tan 135 - tan B  ] /  [ 1 + tan 135 *tan B]

 

tan B  = 2  [ -1 - tan B ] /  [ 1 -tan B ]

 

tan B [ 1 - tan B ]  =  -2 [ 1 +tan B ]

 

tan B [ tan B - 1 ]  = 2 [ 1 + tan B]

 

tan^2 B - tan B = 2 + 2tan B

 

tan^2 B - 3tan B - 2 =  0         let x  = tan B

 

x^2 - 3x   = 2

 

x^2 - 3x  + 9/4 =  2  + 9/4

 

(x -3/2)^2  = 17/4        take the positive root....the negative root produces a negative angle for B

 

x - 3/2  = sqrt (17) / 2

 

x  =  [ 3 +sqrt (17 ]  / 2  = tan B 

 

So

 

tan B =  AD / BD =  AD / 2

 

So

 

AD / 2 =  [ 3 + sqrt (17) ] / 2

 

AD =  [3 + sqrt (17)]

 

[ ABC ]   =   (1/2)BC * AD  =   (1/2)(BD +CD) ( AD) =  (1/2) (6) ( 3 + sqrt (17) )  = 

 

3 ( 3 + sqrt (17) )  = 

 

9 + 3sqrt (17)

 

cool cool cool

 Jan 4, 2024

2 Online Users