+0

# HELP ASAP

0
264
3

Let f(x)=(x^2+6x+9)^50-4x+3 and let r_1,r_2,r_3...r_100 be the roots of f(x).

Compute (r_1+3)^100 + (r_2+3)^100 + ... + (r_100+3)^100

Thank you

Jun 18, 2020
edited by Guest  Jun 18, 2020

#1
+10

Jun 18, 2020
#3
+1

$$f(x) = (x^2 + 6x + 9)^{50} - 4x + 3 = (x + 3)^{100} - 4x + 3$$

Substituting $$r_1, r_2,\cdots,r_{100}$$ into f(x) = 0, we have

$$\begin{cases}\left(r_1 + 3\right)^{100} - 4r_1 + 3 = 0\\\left(r_2 + 3\right)^{100} - 4r_2 + 3 = 0\\\cdots\\\left(r_{100} + 3\right)^{100} - 4r_{100} + 3 = 0\end{cases}$$

Moving all the terms to the right hand side and adding them up,

$$(r_1 + 3)^{100} + (r_2 + 3)^{100} + \cdots + (r_{100} + 3)^{100} = 4(r_1 + r_2 + \cdots + r_{100}) - 300$$

That means the required answer is 4(sum of roots) - 300.

By Vieta's formula, $$\text{sum of roots} = -\dfrac{\text{coefficient of }x^{99}}{\text{coefficient of }x^{100}}$$.

Using binomial theorem, the coefficient of x100 is 1 and the coefficient of x99 is 300.

Therefore $$r_1 + r_2 + \cdots + r_{100} = -300$$.

Therefore $$(r_1 + 3)^{100} + (r_2 + 3)^{100} + \cdots + (r_{100} + 3)^{100} = 4(-300) - 300 = \boxed{-1500}$$

Jun 18, 2020