+0  
 
0
50
4
avatar

The graph of y = f(x) is shown below. 

 

[asy]
size(150);
real ticklen=3;
real tickspace=2;

real ticklength=0.1cm;
real axisarrowsize=0.14cm;
pen axispen=black+1.3bp;
real vectorarrowsize=0.2cm;
real tickdown=-0.5;
real tickdownlength=-0.15inch;
real tickdownbase=0.3;
real wholetickdown=tickdown;
void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool useticks=false, bool complexplane=false, bool usegrid=true) {
import graph;
real i;
if(complexplane) {
label("$\textnormal{Re}$",(xright,0),SE);
label("$\textnormal{Im}$",(0,ytop),NW);
} else {
label("$x$",(xright+0.4,-0.5));
label("$y$",(-0.5,ytop+0.2));
}

ylimits(ybottom,ytop);
xlimits( xleft, xright);
real[] TicksArrx,TicksArry;

for(i=xleft+xstep; i if(abs(i) >0.1) {
TicksArrx.push(i);
}
}
for(i=ybottom+ystep; i if(abs(i) >0.1) {
TicksArry.push(i);
}
}

if(usegrid) {
xaxis(BottomTop(extend=false), Ticks("%", TicksArrx ,pTick=gray(0.22),extend=true),p=invisible);//,above=true);
yaxis(LeftRight(extend=false),Ticks("%", TicksArry ,pTick=gray(0.22),extend=true), p=invisible);//,Arrows);
}
if(useticks) {
xequals(0, ymin=ybottom, ymax=ytop, p=axispen, Ticks("%",TicksArry , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=axispen, Ticks("%",TicksArrx , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));

} else {
xequals(0, ymin=ybottom, ymax=ytop, p=axispen, above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=axispen, above=true, Arrows(size=axisarrowsize));
}
};
rr_cartesian_axes(-5,5,-5,6);
draw((-4,4)--(-1,0)--(0,2)--(4,-4),red);
label("$y = f(x)$", (3,3), UnFill);
[/asy]

 

For each point (a,b) that is on the graph of  y = f(x) the point $\left( 3a - 1, \frac{b}{2} \right)$ is plotted, forming the graph of another function y=g(x).  As an example, the point (0,2) lies on the graph of y=f(x) so the point $(3 \cdot 0 - 1, 2/2) = (-1,1)$ lies on the graph of y=g(x)

(a) Plot the graph of y=g(x) Include the diagram as part of your solution.

(b) Express g(x) in terms of f(x)

(c) Describe the transformations that can be applied to the graph of y=f(x)  to obtain the graph of y=g(x) For example, one transformation could be to stretch the graph vertically by a factor of 4

 Oct 26, 2020
edited by Guest  Oct 26, 2020
edited by Guest  Oct 26, 2020
 #1
avatar
0

(a) See the graph below.

 

(b) g(x) = 1/3*f(2x + 2).

 

(c) We stretch the graph horiztonally by a factor of 2, then stretch the graph vertically by a factor of 3, then shift down 2 units.

 

 Oct 27, 2020
 #2
avatar
0

Thank you so much! also, how did you get b and c? thanks!

 Oct 27, 2020

18 Online Users

avatar