+0  
 
0
65
6
avatar

What are the zeros of the polynomial function?

f(x)=x4+2x3−16x2−2x+15


Select each correct answer.

 

−5

−1

0

1

3

5

Guest Nov 2, 2018
 #1
avatar+13718 
+1

Here is a graphical solution:

 

 

ElectricPavlov  Nov 2, 2018
 #2
avatar
0

Thanks! I need help on this quesiton

 

Factor the polynomial function over the complex numbers.

 

f(x)=x4−x3−2x−4

 

Enter your answer in the box.

f(x) = 

Guest Nov 2, 2018
 #3
avatar+91360 
+1

x^4+2x^3−16x^2−2x+15

 

Note  that we can use a special  "trick" to write this in a slightly different manner

This will make the polynomial easily "factorable"

[ P.S.  - This does not always work...but it just happens to, here  ]

 

(x^4 + 2x^3 - 15x^2) - ( x^2 + 2x -15)    factor

 

x^2 ( x^2 + 2x - 15) - 1 ( x^2 + 2x - 15)   

 

(x^2 - 1) ( x^2 + 2x - 15)

 

(x + 1) ( x - 1) ( x + 5) ( x - 3)

 

Setting each factor to 0  and solving for x  gives the roots  (zeros)

 

x =  - 1 ,  x  = 1  ,   x = -5     x  =  3

 

 

 

cool cool cool

CPhill  Nov 2, 2018
 #4
avatar
0

Thanks!! could you help me with this question?

 

Factor the polynomial function over the complex numbers.

 

f(x)=x4−x3−2x−4

 

Enter your answer in the box.

Guest Nov 2, 2018
 #5
avatar+91360 
+1

Factor the polynomial function over the complex numbers.

 

f(x)=x^4−x^3−2x−4

 

We can write this in a slighly different manner

 

x^4 - 4 - x^3 - 2x

 

(x^4 - 4)  - x(x^2 + 2)

 

(x^2 - 2) (x^2 + 2)  -  x(x^2 + 2)      take out the common factor, x^2 + 2

 

(x^2 + 2)  [ x^2 - 2 - x ]

 

( x^2 + 2) ( x^2 - x - 2)

 

( x + √(2) i) ( x - √(2) i) ( x - 2) ( x + 1)

 

 

 

cool cool cool

CPhill  Nov 2, 2018
 #6
avatar
0

THANK YOU SO MUCH!

Guest Nov 2, 2018

16 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.