We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
292
6
avatar

What are the zeros of the polynomial function?

f(x)=x4+2x3−16x2−2x+15


Select each correct answer.

 

−5

−1

0

1

3

5

 Nov 2, 2018
 #1
avatar+18360 
+1

Here is a graphical solution:

 

 

 Nov 2, 2018
 #2
avatar
0

Thanks! I need help on this quesiton

 

Factor the polynomial function over the complex numbers.

 

f(x)=x4−x3−2x−4

 

Enter your answer in the box.

f(x) = 

 Nov 2, 2018
 #3
avatar+100571 
+1

x^4+2x^3−16x^2−2x+15

 

Note  that we can use a special  "trick" to write this in a slightly different manner

This will make the polynomial easily "factorable"

[ P.S.  - This does not always work...but it just happens to, here  ]

 

(x^4 + 2x^3 - 15x^2) - ( x^2 + 2x -15)    factor

 

x^2 ( x^2 + 2x - 15) - 1 ( x^2 + 2x - 15)   

 

(x^2 - 1) ( x^2 + 2x - 15)

 

(x + 1) ( x - 1) ( x + 5) ( x - 3)

 

Setting each factor to 0  and solving for x  gives the roots  (zeros)

 

x =  - 1 ,  x  = 1  ,   x = -5     x  =  3

 

 

 

cool cool cool

 Nov 2, 2018
 #4
avatar
0

Thanks!! could you help me with this question?

 

Factor the polynomial function over the complex numbers.

 

f(x)=x4−x3−2x−4

 

Enter your answer in the box.

 Nov 2, 2018
 #5
avatar+100571 
+1

Factor the polynomial function over the complex numbers.

 

f(x)=x^4−x^3−2x−4

 

We can write this in a slighly different manner

 

x^4 - 4 - x^3 - 2x

 

(x^4 - 4)  - x(x^2 + 2)

 

(x^2 - 2) (x^2 + 2)  -  x(x^2 + 2)      take out the common factor, x^2 + 2

 

(x^2 + 2)  [ x^2 - 2 - x ]

 

( x^2 + 2) ( x^2 - x - 2)

 

( x + √(2) i) ( x - √(2) i) ( x - 2) ( x + 1)

 

 

 

cool cool cool

 Nov 2, 2018
 #6
avatar
0

THANK YOU SO MUCH!

 Nov 2, 2018

11 Online Users

avatar